Medium Access Control Design for Full-Duplex Wireless Systems: Challenges and Approaches

Karaputugala Madushan Thilina, Hina Tabassum, Ekram Hossain, and Dong In Kim

Abstract—Recent advances in self-interference cancellation techniques enable in-band full-duplex (FD) transmission in which a wireless node can simultaneously transmit and receive in the same frequency band. However, to fully exploit the benefits of FD technology in a wireless network, in addition to the physical (PHY) layer issues, medium access control (MAC) layer issues such as inter-node collisions, fairness between half-duplex (HD) and FD users, opportunistic selection of different modes of FD transmission, and synchronization issues need to be resolved. To this end, this article first discusses the fundamental concepts, potential benefits, and primary network topologies of FD transmission. We then highlight immediate challenges (both in the PHY and MAC layers) that need to be addressed in designing FD wireless systems. A qualitative comparison among the existing full-duplex MAC (FD-MAC) protocols is then provided. Finally, the primary requirements and research issues for the design of FD-MAC protocols are discussed and also implications of FD technology in cellular wireless networks are highlighted.

Index Terms—Full-duplex, medium access control (MAC), Wi-Fi networks, cellular networks.

I. INTRODUCTION

Until very recently, the concept of transmission and reception in the same time and frequency domain (referred as full-duplex (FD) technology) did not seem to be very promising. The primary reason of this was the overwhelming nature of the so called self-interference (SI), which is generated by the transmitter to its own collocated receiver. SI is a fundamental bottleneck in the progress of FD technology [1]. Fortunately, with the recent advancements in the antenna and digital baseband technologies as well as the RF interference cancellation techniques, SI can be reduced close to the level of noise floor in low-power networks, e.g., cognitive radio networks and Wi-Fi networks [2].

At the physical layer (PHY), considering a point-to-point link and perfect SI cancellation, FD transmission offers twice the spectral efficiency of half-duplex (HD) transmission. Due to this attractive feature, FD technology is rapidly extending its applications in different wireless communications scenarios, especially, the ones with low transmission power and distance requirements [3]. For instance, small cell networks, device-to-device (D2D) communications, cognitive radio networks and multi-hop relaying are potential areas where FD technology can be practically feasible and implementable in the near future. However, to fully exploit the benefits of FD technology, major PHY and medium access control (MAC) layer issues need to be resolved by devising new PHY layer techniques and by modifying the existing MAC layer protocols. These issues include mitigation of residual self-interference, inter-node interference, inter-cell uplink to downlink/downlink to uplink interference, fairness between HD and FD users, opportunistic selection of different modes of FD transmission, synchronization and time adjustment issues to establish FD transmission, etc. Understanding the role of PHY and MAC layers is crucial to address these issues.

This article first discusses the fundamental concepts, potential benefits, primary network topologies, and collision domains in FD transmission. Then it highlights the immediate challenges (both in the PHY and MAC layers) that need to be addressed in the design of FD-MAC protocols. A qualitative overview of the existing FD-MAC protocols is then provided. To this end, major issues and approaches for designing FD-MAC are discussed. Finally, implications of FD technology on the resource and interference management aspects of cellular networks are highlighted.

II. FUNDAMENTALS OF FULL-DUPEX WIRELESS SYSTEMS

A. Antenna Configurations for FD Systems

Since FD transmission requires in-band operation of transmitting and receiving RF chains, the conventional duplexers cannot be directly utilized to maintain separation between the two RF transmissions. FD transmission can, however, be realized through the following antenna configurations, i.e.,

- **Shared antenna configuration** [4]: In this configuration, a single antenna can be used for simultaneous in-band transmission and reception through a three-port circulator. Ideally, the circulator prevents the leakage of signals from the transmit RF chain to the receive RF chain. However, in practice, the transmit signal causes SI to the signals received. Moreover, due to hardware limitations and severe interference, multiple circulators cannot be utilized to enable the use of multiple shared antennas.
- **Separated antenna configuration** [5], [6]: In this configuration, the total number of antennas are divided into two groups for transmission and reception. This division of spatial resources however introduces a trade-off. As such, a fair comparison between HD and FD transmission should consider the exact number of RF chains/antennas required to establish FD transmission. Also, in the separated antenna configuration, it is crucial to first analyze whether the performance gains of a HD multi-antenna

This work was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) and in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2014R1A5A1011478).
B. Transmission Modes in Full-Duplex Systems

The fundamental modes of transmission in FD wireless systems are listed below [7].

- **Half-Duplex**: In this mode, RF transmission takes place in a single direction between primary transmitter (PT) (i.e., the node that initiates transmission) and primary receiver (PR) (i.e., the node which decodes the signal from PT) (see Fig. 1(a)). Both nodes operate in HD mode if neither PT receives a signal from a secondary transmitter (ST) (i.e., the node which is allowed to transmit simultaneously with PT) nor the PR has to transmit to PT or any other node.

- **Bi-directional Full-Duplex (BFD)**: In this mode, both PT and ST transmit signals to each other at the same time (see Fig. 1(b)). Note that, PT and PR becomes secondary receiver (SR) (i.e., the node which decodes signal from ST) and ST, respectively.

- **Three Node Full-Duplex (TNFD)**: In this mode, a FD node transmits to one node while receives from another node (see Fig. 1(c) and Fig. 1(d)). The transmission modes illustrated in Fig. 1(c) and Fig. 1(d) are known as destination-based transmission mode (DBTM) and source-based transmission mode (SBTM), respectively.

 - **DBTM**: In DBTM mode, the destination for PR is another node (i.e., not the PT node) which is located in the vicinity of PR’s transmission range. Thus, PR becomes the ST and its receiver becomes SR.

 - **SBTM**: The SBTM mode is enabled when PR does not have data to transmit. However, the PT’s neighbor node wants to transmit data to PT. In this case, PT’s neighbor node becomes ST and PT becomes SR by activating the FD mode.

As an example, in cellular networks where a base station (BS) may not have data packets for a node transmitting to the BS in the uplink or a node receiving transmission from the BS in the downlink may not have data packets for the BS. In such scenarios, the BFD mode cannot be established. However, in the former case, a BS can exploit the FD opportunity by initiating a downlink transmission to another node (DBTM). In the latter case, a BS may initiate receiving data packets from another node in the uplink (SBTM). Note that, both SBTM and DBTM may also occur at the same time and the mode can thus be referred to as **concurrent SBTM and DBTM**.

Inter-node interference is a crucial factor in TNFD-enabled FD networks depending on the locations and transmit powers of the nodes. Various inter-node interference scenarios are depicted in Fig. 2. The bold circle around the nodes presents the PT’s transmission region whereas the dotted circle denotes the ST’s transmission region. Fig. 2(a) and Fig. 2(b) show intra-node collision within a set of nodes operating in DBTM and SBTM, respectively. In DBTM, the SR suffers collision from PT if located within the PT’s transmission region. In SBTM, the PR suffers collision from ST if located within the ST’s transmission region. Similarly, Fig. 2(c), Fig. 2(d), and Fig. 2(e) show the inter-node collisions due to the STs’ transmission region overlapping, STs’ and PTs’ transmission region overlapping, and PTs’ transmission region overlapping, respectively.

C. Fundamental Benefits of FD Technology

In addition to doubling the spectral efficiency, FD technology exhibits several other advantages over conventional HD transmission.

- **Opportunistic selection of FD mode**: Radio resources (e.g., resource block (RB) in LTE-A networks) can be opportunistically used for either HD, BFD, or TNFD transmission mode. This mode selection per resource block can be optimized to maximize the overall system utility considering the prior knowledge of the available data packets and channel/interference conditions of the prospective participating nodes.

- **Rapid collision detection**: An FD-enabled wireless device can listen to the RF channel while transmitting to probe the occurrence of other transmissions on the same channel. This would enable fast collision detection, e.g., spectrum sensing in cognitive radio networks.

- **BFD mitigates hidden terminal problem**: The transmitted signals from both ST and PT can be overhead by their respective neighboring nodes. As a result, the neighboring nodes refrain from initiating transmission until the ongoing BFD transmission gets completed. The collisions due to hidden node problem can thus be eliminated.

- **Channel selection**: An FD-enabled node can assist nearby nodes in the channel selection process. For instance, if a PR have nothing specific to transmit to PT or any other node, the PR may assist its nearby nodes by informing them about the interference on a channel. This may help the nearby nodes in selecting a channel.

- **Reduced latency**: FD technology exhibits reduced latency by enabling the reception of feedback signals from the receiver (i.e., channel state information (CSI), control signaling for ARQ and/or network management, ACK, etc.) during transmission.

- **Secure transmission**: Due to the simultaneous transmission and reception in FD networks, the eavesdroppers receive mixed signals that are difficult to decode.

- **RF energy transfer while transmission**: FD technology enables a wireless node to perform wireless charging while performing an uplink transmission.

III. CHALLENGES IN THE DESIGN OF FD WIRELESS SYSTEMS

A. Fundamental Challenges

1) **Residual Self-Interference (SI)**: SI is caused by the coupling of the transceiver’s own transmit signal to the receiver

1Hidden terminals are the wireless nodes that can potentially transmit (and thus introduce interference) during an ongoing transmission. Note that, the hidden nodes cannot be detected by the carrier sensing mechanism.
while attempting to receive signal sent by another wireless node. The key challenge arises from the large power level difference between transceiver’s own transmission and the signal of interest coming from a distant source. To achieve considerable SI cancellation, several antenna, RF, and baseband cancellation techniques [2], [9] are currently under investigation. Even with the several stages of SI cancellation (passive, active analog, and active digital), a certain amount of SI remains in the system which is referred as residual SI. To achieve theoretical performance limit of FD transmission, efficient SI cancellation techniques are required that can eliminate residual SI.

2) Intracell interference: In a TNFD-based SBTM transmission, a PT communicates with two nodes using HD transmission, i.e., PR in the downlink and ST in the uplink. There exists two types of interference in this case: residual SI from PT to SR and intra-node interference from ST to PR (see Fig. 2(b)). Since the PT and SR are collocated, the SI signal is known and can be possibly canceled at SR. However, the signal which is the source of the intra-node interference is not known at the PR and thus cannot be canceled on reception. This intra-node interference can significantly degrade the performance of PT-PR transmission depending on the vicinity of ST with PR.

3) Uplink to downlink and downlink to uplink inter-cell interference: In multiuser cellular networks, an additional inter-cell interference will be experienced by a node (whether operating in HD, BFD or TNFD mode) depending on its direction of transmission. For instance, if a node is transmitting in the uplink it will receive interference from the uplink transmitters of the neighboring cells (conventional) as well as the neighboring BSs who are transmitting in the downlink (additional). This additional interference is therefore referred to as downlink to uplink inter-cell interference. On the other hand, if a node is transmitting in the downlink it will receive interference from the uplink transmitters of the neighboring BSs (conventional) as well as the uplink transmitters of the neighboring cells which is referred to as uplink to downlink inter-cell interference. By analyzing these two specific scenarios, it can be concluded that the users who want to operate in HD mode may suffer considerably as the potential gains of FD technology are not applicable to them. Moreover, due to high transmit power of BSs, downlink to uplink interference becomes more severe than the uplink to downlink interference.

4) Asynchronous TNFD transmission: While BFD mode may possibly enable a perfectly synchronized transmission between two nodes, it may not be straightforward in TNFD transmission mode. The reason is that the emergence of the third node may not occur at the same time when a single-hop HD transmission is initiated. Thus, the primary question arises about the feasibility and performance limit of the asynchronous TNFD systems, i.e., can a new node be added once a HD transmission starts? If yes, than how much gains can be achieved practically?

There can be two possible scenarios, i.e., a PT starts receiving a packet while initiating a transmission, or a PR starts a new transmission while receiving a packet. In the former case, PT can suppress its own SI while transmitting to PR in order to decode new transmission from ST. Also, correct decoding of new reception requires PT to estimate the channel between ST and itself in the presence of SI. On the other hand, initiating a new transmission at PR while receiving from PT is not reliable enough as the process of estimating the channels to establish canceling signal causes a self-collision at the receiver [6].

B. Challenges at the MAC Layer

FD networks allow several transmission modes that can result in new kind of inter-node collisions other than the SI as
mentioned in Section II. As such, minimizing the additional inter-node collisions with traditional MAC protocols such as the carrier-sense multiple access with collision avoidance (CSMA/CA)-based HD-MAC protocols is not straightforward. This section focuses on characterizing the main challenges that need to be considered while designing MAC protocols for FD transmission.

1) Selecting FD transmission modes and nodes: In FD networks, nodes can operate in any of the transmission modes which are illustrated in Fig. 1. Hence, selecting a set of nodes and an FD transmission mode to maximize the overall utility of FD transmission is crucial. The basic approaches that are currently used in FD-MAC protocols to exploit proper nodes and modes for FD transmission are shared random backoff, header snooping, and request-to-send (RTS)/clear-to-send (CTS) mechanisms. These will be discussed in the next section.

2) Fairness: Due to bidirectional communication capabilities in FD networks, the fairness among nodes may degrade by a factor of two compared to HD communication. For instance, assume that there are three sets of potential BFD nodes located parallel to each other. The BFD nodes in the corners can use the same channel without interfering to each other as they are not located in the coverage area of one another. However, the FD set located within the coverage of both FD sets is highly unlikely to start its transmission since both the FD nodes in the middle sense that the channel is busy most of the time. The possibility of this case is double for a FD device located in the coverage of two FD sets. Hence, designing efficient and fair MAC protocols for FD networks is a crucial task. This unfairness is penalized by tuning the channel access probability of nodes as a function of proportion of time in which their transmission has been active [10].

3) Exploiting FD opportunities via buffer: In the existing MAC standards, the head-of-line (HOL) packet of the buffer always gets transmitted irrespective of the buffer length, type of packets, and their respective destinations. For instance, if node PT is capable of performing BFD transmission with node PR but PR has no HOL packet for PT (although some packets are available in the buffer), then PT needs to either wait until the HOL packet of PR is transmitted, or initiate an HD transmission. Later, the PR will need to do an HD transmission to the PT. It can thus be concluded that, exploiting the right packets from buffer that can enable FD transmission opportunities may possibly reduce the overall latency at the cost of delays for the destinations of HOL packets [6].

4) Residual hidden node problem: In practice, the primary and secondary transmitted packets are offset in time and may have different packet lengths. Therefore, the transmission of all nodes will not end up at the same time. Hence, relying only on FD data transmission (even in BFD mode) does not completely solve the hidden node problem. The hidden node problem in FD transmissions due to asymmetric data packets at transmitter and receiver can be referred to as the residual hidden node problem. The node that finishes data transmission earlier can however resolve this issue by transmitting busy tone signals until the other node completes its transmission [11].

5) Contention in asynchronous TNFD mode: Asynchronous TNFD mode occurs when a transmitter, say PT, has already started transmission and a new transmitting node emerges who wants to transmit to the PT. In this case, the traditional RTS/CTS mechanism cannot be implemented as the PT is transmitting already. Thus, the new node has no way to know about the other nodes who may be trying to transmit to the PT at the same time. Therefore, resolving a contention becomes a challenging task in asynchronous TNFD mode [10].

6) Deafness in directional antennas: If FD systems use directional antennas, then the neighboring nodes around PT and ST are unable to detect these transmissions. This scenario is known as deafness problem in directional transmission [12]. Due to the deafness problem, the neighboring nodes try to access a particular channel assuming that it is available for their transmission. This might end up with a collision in the ongoing transmission. Centralized MAC protocol can therefore be useful in avoiding such collisions as the central coordinator might know the locations of its registered nodes and their corresponding transmission directions.

IV. EXISTING FD-MAC PROTOCOLS

The existing FD MAC protocols in the literature can be classified based on their operation, handshaking mechanism, transmission mode, time synchronization, and number of channels used for resource allocation as illustrated in Table I. In this section, we will discuss three key mechanisms that can be utilized in the design of FD-MAC protocols [6]. These include, (i) shared random backoff; (ii) header snooping; (iii) collision avoidance with RTS/CTS exchange. In order to execute these mechanisms, the basic structure of HD packet does not need to be modified significantly, i.e., all the basic fields in HD packet header (i.e., source/destination address, packet duration, fragmentation, etc.) remain same. However, to exchange the basic information among the FD nodes, following unique fields/identifiers are required.

- **FD transmission mode (FDM) field:*** At a given time, the set of nodes selected to initiate FD transmission can operate in either one of the four transmission modes depicted in Fig. 1. To indicate/select/suggest a mode, the FD packet thus needs a separate field with the length of two bits (i.e. ’00’ for HD-mode, ’01’ for BFD-mode, ’10’ for DBTM, and ’11’ for SBTM).

- **Full-duplexing duration (FDDUR):*** A two bytes field to indicate the duration of FD transmission is also required. Otherwise, the nodes participating in FD transmission may not synchronize and increase the collision rates.

Complex FD-MAC protocols may require further information exchange among the nodes [6].

A. Shared Random Backoff (SRB)-Based FD-MAC [6]

In SRB-based protocol, all nodes that have performed handshaking for FD communications and have transmitted at least a data packet delay their transmission for a common duration with the intention of allowing other nodes to utilize the channel. Information about this duration needs to be sent to other nodes in the network by including an additional field
in the FD packet header known as SRB field. SRB-based MAC protocols are well-suited for BFD when participating nodes have many packets to exchange. The reason is that the problems in backoff counter countdown mechanism (see Section V.3) turn out to be significant in TNFD mode and degrades performance due to the lack of synchronization. SRB protocols are implicitly synchronous due to the common backoff and allow FD nodes to spare channel for other starving nodes.

Illustration: Let us assume that there are two nodes and they want to exchange data in between them. Let one node wins the contention (PT) and starts transmission to intended receiver (PR). Since the PT has large amount of data to transmit to the PR, the PT sets the FDM field in the FD header to ‘01’ and SRB field to random backoff value. Once the PR successfully decodes this packet, it knows that the PT has more packets to transmit and the preferred transmission mode is bidirectional transmission. Since the PR also has many packets to transmit to the PT, the PR sends an ACK to the PT by setting the FDM field in the FD header to ‘01’. Then, both the PT and PR start their transmissions simultaneously after waiting for the random backoff time which was informed by the PT. This scenario is a forced shared random backoff since PR has to follow the back off time informed by the PT. Otherwise, PR also can propose a backoff time to PT by setting SRB field in ACK packet. In this scenario, either minimum or maximum backoff time should be selected by both the nodes and this selection should be set by the MAC protocol a priori. Note that in any SRB-based MAC protocol the first transmission is a half-duplex one.

B. Header Snooping-Based FD-MAC [6]

In header snooping-based MAC protocols, the primary transmitted packet header is decoded by at least single registered node in the network excluding primary receiver. Due to this header snooping, the FD nodes transmit in different time stamps that results in asynchronous transmission. The header snooping-based MAC protocols are well-suited for applications where nodes operate in SBTM since PT transmitted packet can be snooped by other nodes located withing the PT’s transmission region (Fig. 1(d)).

Illustration: Let us assume that there are three nodes in the network and one node wins the contention (PT). Then, the PT sets its FDM field in the FD packet header to ‘01’ and transmits its packet to the PR indicating its preferred transmission mode as bidirectional transmission. The PR sets its FDM field in the FD ACK header to ‘00’ and it indicates that only HD is possible. This indirectly conveys to the PT that the PR does not have any packet to transmit. Meanwhile, another node (ST) in the network, which wants to transmit packets to the PT, snoops the PT’s packets and knows that the PT requests a bidirectional transmission from the PR. However, the ST does not have any idea about the PR’s response if the ST is located outside the PR’s transmission region. Since the PR does not have any packet to transmit to the PT, the PT sets its FDM field in the FD packet header to ‘11’ and this packet is snooped by the ST. Once the ST notices that the FDM field in the PT’s packet header is ‘11’, it starts its transmission simultaneously with the PT. Note that the first packet transmission in the header snooping-based MAC protocol does not utilize full-duplexing.

C. RTS/CTS-Based FD-MAC [14]

The RTS/CTS mechanism which is used in HD transmission can be utilized even in FD transmission to mitigate the hidden node problem. In FD communication, the FD RTS/CTS headers are obtained by adding FDM and FDDUR field to the HD RTS/CTS headers. Additionally, another address field is added to HD CTS header which indicate SR’s or ST’s address. Let us denote that address field as STorSRAddress. Hence, the basic operation of the RTS/CTS-based FD-MAC protocols can be illustrated as follows.

Illustration: Let us assume there are three nodes and one wins the contention without loss of generality. Then, the one who wins the contention (PT) sets its FDM field in the FD RTS header to ‘01’ and transmits packet to the intended receiver (PR) indicating that its preferred transmission mode is a bidirectional transmission. Let us assume that the PR does not have any packet to transmit to PT but it has many packets to transmit to another node in its transmission range. Then, the PR (ST) sets its FDM field in the FD CTS header to ‘10’ and STorSRAddress field in the CTS header, which is the address of the node to whom the PR (ST) wants to transmit its data. With the reception of this packet, the PT knows in which transmission mode it is going to operate and waits for another CTS duration. Note that this CTS packet acts as an RTS to the SR. Hence, within this waiting CTS time duration, the SR transmits a CTS packet to the ST (PR) after setting the FDM field to ‘00’. The nodes around the SR receives this packet and knows that a transmission is going on that channel. After the SR’s CTS transmission, both the PT and ST start to transmit their data to the intended receivers simultaneously.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network architecture</td>
<td>Centralized [13] or distributed [7], [14], [15]</td>
</tr>
<tr>
<td>Control information exchange</td>
<td>RTS/CTS [1], [14] or ACK [5], [9], [10] in data transmission channel</td>
</tr>
<tr>
<td></td>
<td>Dedicated or dynamically configurable control channel</td>
</tr>
<tr>
<td>Spectrum access</td>
<td>Contention [11], [16], time slotted [13] or hybrid</td>
</tr>
<tr>
<td>Transmission mode</td>
<td>Bi-directional FD [6], [7] or Three node FD [6], [7]</td>
</tr>
<tr>
<td>Time adjustment (synchronous or asynchronous)</td>
<td>RTS/CTS [1], [14], ACK [5], [9], [10] or beacon [13]</td>
</tr>
<tr>
<td>Channel usage</td>
<td>Single channel [5–7] and multiple channel [11], [16]</td>
</tr>
</tbody>
</table>
A. Design Challenges for FD-MAC Protocols

1) Node selection: Existing FD-MAC protocols are designed for a predefined set of nodes (i.e., two or three nodes) and thus do not address the challenge of node selection in multi-node FD networks while considering the overall utility of FD transmission and the inter-node collisions. Note that, node selection is even more challenging for TNFD modes due to intra-node/inter-node collisions. A straight-forward approach is to perform location aware selection of nodes, i.e., considering distance from PT to SR in DBTM and considering distance from ST to PR in SBTM. However, this might increase the performance loss of secondary link due to far-away distances. In this context, optimal location-aware node selection algorithms need to be developed that can minimize intra-node interference while not degrading the signal strength of the corresponding link much. Further, the inter-node collisions due to the hidden nodes can be alleviated by transmitting RTS/CTS signaling before establishing the FD connection or by transmitting busy tones.

2) Fairness in secondary link: In existing FD-MAC protocols, the node which wins the contention (say, PT) starts its transmission on its best channel without considering the quality of the secondary link. The channel which is selected for primary transmission might be the worst channel for the secondary link. Therefore, designing a MAC protocol that considers both primary and secondary link conditions is highly desirable to improve the overall utility of FD transmission.

3) Channel selection: The channel selection in FD-MAC protocols is challenging due to multiple transmission modes and different interference scenarios.

- As mentioned in Section V-A2, selecting a common channel becomes more crucial in TNFD mode. The best common channel for TNFD mode can be obtained using a graph based approach. Once the channel is selected the process of handshaking among the FD set is also a challenge that need to further exploit the conventional approaches, e.g., common hopping sequence, control channel, and rendezvous scheme.

- To enhance the fairness between primary and secondary links as mentioned in Section V-A2, selecting a common channel that considers the overall utility of primary and secondary link is crucial and not an easy task due to the signaling overhead. To mitigate this effect all the participating nodes have to handshake before finalizing their transmit channel. In this context, studying a low overhead FD-MAC protocol is also required.

4) Backoff counter countdown mechanism: In SRB-based MAC protocols [6], FD-enabled nodes select a common backoff time to start their next transmission simultaneously. However, different nodes independently countdown their backoff counters since each node may observe the selected channel’s idleness differently due to the heterogeneity of the network. As a result, the nodes which handshake for full-duplexing with a common backoff starts their transmission in two different timestamps. This degrades the system performance due to lack of synchronization in SRB-based MAC protocols.
to the uplink traffic. It is thus of immense importance to
understand the fundamental performance limits and to gain
insight into the behavior of existing FD-MAC protocols.

Typically, downlink traffic is much more significant compared
to the uplink/downlink traffic load intensities. However, the
downlink to uplink interference ratio (SIR) can be applied more
frequently in low power small BSs due to high
inter-cell interference caused by discovering transmission mode and
its corresponding nodes, coordination of participating nodes,
full-duplexing time slots and channel identification, etc.

As in other MAC
protocols, the analysis of FD-MAC protocols is also crucial
to understand the fundamental performance limits and to gain
design insights. However, analysis of FD-MAC is challenging
due to the simultaneous transmission, multiple transmission
modes, different packet sizes, busy tones, time adjustments,
and signaling overhead.

B. Implications of FD in Cellular Networks

1) Cooperation in cellular networks: To mitigate uplink to
downlink and downlink to uplink inter-cell interference issues,
all nearby BSs need to cooperate and optimize the proportion of
FD transmissions considered the uplink/downlink traffic load intensities.

2) Traffic load-aware FD networks: The asymmetry of
uplink and downlink data traffic may not directly affirm
the significance of FD transmission in cellular networks.
Typically, downlink traffic is much more significant compared
to the uplink traffic. It is thus of immense importance to
optimize the proportion of FD transmissions considering the
uplink/downlink traffic load intensities.

3) Clustering in small cell networks: FD transmission can
be applied more frequently in low power small BSs due to high
prospects of SI cancellation. However, the uplink to downlink
and downlink to uplink inter-cell interference becomes even
more critical in densely deployed SCNs. Efficient clustering
methods/techniques need to be adopted that can allow nearby
small-cells to coordinate their FD transmissions. For instance,
a cluster of small-cells may coordinate the execution of FD
transmissions such that all small-cells within that cluster
select FD mode in a sequential manner. In this way, the
aforementioned interference issues can be possibly minimized.
In this regard, inter-cluster cooperation may also be exploited.

4) Cooperative FD-D2D transmissions: Device-to-device
(D2D) communications allow nearby users to establish a
direct link to communicate with each other. While D2D links
are typically exploited for HD data transmissions, they may
be used for interference mitigation or channel selection if
exploited in FD mode. For instance, a D2D transmitter can
hear interference signals on FD receiver and can provide the
interference information to its intended receiver along with the
data packets. In addition, any downlink cellular user can also
exploit the FD-D2D communication to forward interference
knowledge to a nearby user. This knowledge can help nearby
users in either interference cancellation or channel selection.

VI. Conclusion

Full-duplexing will be one of the main candidate technologies for future wireless communication systems to exploit
spectrum and this will practically enable applications such as
cognitive radios. We believe that the maximum gain due

<table>
<thead>
<tr>
<th>MAC protocol</th>
<th>Mechanism</th>
<th>Application</th>
<th>Benefits</th>
<th>Drawbacks</th>
<th>Transmission modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed MAC [7]</td>
<td>Header Snooping</td>
<td>Cellular, D2D, Relay, WLAN</td>
<td>Low overhead in handshaking, consider inter-node interference, select nodes for TNFD based on the signal-to-interference ratio (SIR)</td>
<td>Busy tone signaling required, duration of header snooping period cannot be used for data transmission</td>
<td>BFD, DBTM, SBTM</td>
</tr>
<tr>
<td>RTC MAC [15]</td>
<td>Signature based RTS/CTS</td>
<td>Cellular, D2D, Relay networks</td>
<td>Low overhead signaling, identify nearby transmissions to maximize system throughput</td>
<td>Vulnerable to collision</td>
<td>BFD, DBTM, SBTM</td>
</tr>
<tr>
<td>ContraFlow [10]</td>
<td>Header Snooping</td>
<td>Cellular, D2D, Relay networks</td>
<td>Does not reserve a channel, fairness is considered</td>
<td>Busy tone signaling, no handshake before transmitting packets</td>
<td>BFD, DBTM, SBTM</td>
</tr>
<tr>
<td>Distributed MAC [5][2]</td>
<td>Header Snooping</td>
<td>Cellular, D2D networks</td>
<td>Lower signaling overhead</td>
<td>No handshake before transmitting packets</td>
<td>BFD</td>
</tr>
<tr>
<td>Wormhole switching based MAC [9]</td>
<td>Header Snooping</td>
<td>Multi-hop networks</td>
<td>Lower signaling overhead</td>
<td>No handshake before transmitting packets</td>
<td>DBTM</td>
</tr>
<tr>
<td>Directional antenna [12]</td>
<td>Header Snooping</td>
<td>Multi-hop networks</td>
<td>No ACK frame of contention window</td>
<td>Vulnerable to collision</td>
<td>Multi-hop networks based on DBTM</td>
</tr>
<tr>
<td>RFD MAC [17]</td>
<td>Header Snooping</td>
<td>Relay networks</td>
<td>Asynchronous approach with low signaling overhead</td>
<td>Higher collision period in contention</td>
<td>DBTM</td>
</tr>
<tr>
<td>JANUS [13]</td>
<td>Header Snooping</td>
<td>Relay networks</td>
<td>Achieve higher throughput by eliminating random backoff, nodes transmit multiple packets with a single set of control packets</td>
<td>Higher collision period in contention</td>
<td>DBTM</td>
</tr>
<tr>
<td>SRB-based MAC [6]</td>
<td>SRB</td>
<td>Cellular, D2D</td>
<td>Both the nodes fully utilized data transmission duration</td>
<td>Independent backoff counter count down of different nodes</td>
<td>BFD</td>
</tr>
</tbody>
</table>

TABLE II

QUALITATIVE OVERVIEW OF EXISTING FD-MAC PROTOCOLS
to full-duplexing can only be achieved through a smart FD-MAC protocol that jointly addresses the physical layer and MAC layer aspects. In this paper, we have highlighted the major challenges that need to be considered in designing smart FD-MAC protocols. The possible approaches to solve these challenges have been discussed. Also, the interference management challenges that arise in cellular networks due to the adoption of FD technology have also been discussed.

REFERENCES

Hina Tabassum received the B.E degree in electronic engineering from the NED University of Engineering and Technology (NEDUET), Karachi, Pakistan, in 2004. She received during her undergraduate studies 2 gold medals from NEDUET and SIEMENS for securing the first position among all engineering universities of Karachi. She then worked as lecturer in NEDUET for two years. In September 2005, she joined the Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), Karachi, Pakistan and received there the best performance award in 2009. She completed her Masters and Ph.D. degree in Communications Engineering from NEDUET in 2009 and King Abdullah University of Science and Technology (KAUST), Makkah Province, Saudi Arabia, in May 2013, respectively. Currently, she is working as a post-doctoral fellow in the University of Manitoba (UoM), Canada. Her research interests include wireless communications with focus on interference modeling, spectrum allocation, and power control in heterogeneous networks.

Ekram Hossain (F’15) is currently a Professor in the Department of Electrical and Computer Engineering at University of Manitoba, Winnipeg, Canada. He received his Ph.D. in Electrical Engineering from University of Victoria, Canada, in 2001. He is a Fellow of the IEEE. His current research interests include design, analysis, and optimization of wireless/mobile communications networks, cognitive radio systems, and network economics. He has authored/edited several books in these areas (http://home.cc.umanitoba.ca/~hossaina). Dr. Hossain serves as the Editor-in-Chief for the IEEE Communications Surveys and Tutorials, and an Editor for IEEE Wireless Communications. Also, currently he serves on the IEEE Press Editorial Board. Previously, he served as the Area Editor for the IEEE Transactions on Wireless Communications in the area of “Resource Management and Multiple Access” from 2009-2011, an Editor for the IEEE Transactions on Mobile Computing from 2007-2012, and an Editor for the IEEE Journal on Selected Areas in Communications - Cognitive Radio Series from 2011-2014. Dr. Hossain has won several research awards including the University of Manitoba Merit Award in 2010 and 2014 (for Research and Scholarly Activities), the 2011 IEEE Communications Society Fred Ellersick Prize Paper Award, and the IEEE Wireless Communications and Networking Conference 2012 (WCNC’12) Best Paper Award. He is a Distinguished Lecturer of the IEEE Communications Society for the term 2012-2015. Dr. Hossain is a registered Professional Engineer in the province of Manitoba, Canada.
Dong In Kim (S’89-M’91-SM’02) Dong In Kim received the Ph.D. degree in electrical engineering from the University of Southern California, Los Angeles, CA, USA, in 1990. He was a tenured Professor with the School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada. Since 2007, he has been with Sungkyunkwan University (SKKU), Suwon, Korea, where he is currently a Professor with the College of Information and Communication Engineering. Dr. Kim has served as an Editor and a Founding Area Editor of Cross-Layer Design and Optimization for the IEEE Transactions on Wireless Communications from 2002 to 2011. From 2008 to 2011, he served as the Co-Editor-in-Chief for the Journal of Communications and Networks. He is currently the Founding Editor-in-Chief for the IEEE Wireless Communications Letters and has been serving as an Editor of Spread Spectrum Transmission and Access for the IEEE Transactions on Communications since 2001. He was the recipient of the Engineering Research Center (ERC) for Wireless Energy Harvesting Communications Award.