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AbstrAct
Performance optimization of wireless networks 

is typically complicated because of high computa-
tional complexity and dynamic channel conditions. 
Considering a specific case, the recent introduction 
of intelligent reflecting surface (IRS) can reshape 
the wireless channels by controlling the scattering 
elements’ phase shifts, namely, passive beamform-
ing. However, due to the large size of scattering 
elements, the IRS’s beamforming optimization 
becomes intractable. In this article, we focus on 
machine learning (ML) approaches for complex 
optimization problems in wireless networks. ML 
approaches can provide flexibility and robustness 
against uncertain and dynamic systems. However, 
practical challenges still remain due to slow con-
vergence in offline training or online learning. This 
motivated us to design a novel optimization-driv-
en ML framework that exploits the efficiency of 
model-based optimization and the robustness of 
model-free ML approaches. Splitting the control 
variables into two parts allows one part to be 
updated by the outer loop ML approach while 
the other part is solved by the inner loop optimi-
zation. The case study in IRS-assisted wireless net-
works confirms that the optimization-driven ML 
framework can improve learning efficiency and 
the reward performance significantly compared to 
conventional model-free ML approaches.

IntroductIon
Intelligent reflecting surface (IRS) was recently 
introduced in wireless communications to con-
figure the signal propagation environment in 
favor of information transmission [1]. By a joint 
phase control of the IRS’s scattering elements, 
namely, passive beamforming, the signal reflec-
tions can be tuned to create desirable channel 
conditions. The radio environment can be opti-
mized to improve network performance (e.g., 
channel capacity and transmit power savings). 
The IRS’s passive beamforming optimization is 
challenged by the computational complexity with 
a large number of scattering elements. Moreover, 
it relies on the exact channel information, which 
becomes more difficult to estimate for passive 
scattering elements with limited information pro-
cessing capability. As such, it becomes difficult for 
beamforming optimization in IRS-assisted wireless 

networks, which generally requires model simpli-
fication, approximation, and sophisticated algo-
rithm design. Besides model-based optimization 
solutions, we observe an upsurge of model-free 
machine learning (ML) approaches, which is also 
proposed for performance optimization problems 
in IRS-assisted wireless networks. However, the 
integration of model-based optimization and mod-
el-free ML approaches is seldom studied. The opti-
mization solutions typically rely on the exploration 
of the structural information. For example, the 
deterministic and functional connections of con-
trol variables due to their physical dependence. 
We envision that such structural information can 
also be exploited to improve the learning perfor-
mance of conventional ML approaches.

Motivated by the above observations, our con-
tributions to this article are twofold. First, we pro-
pose a novel optimization-driven ML framework to 
solve complex problems in wireless systems. We 
utilize optimization solutions to drive the learning 
process toward a better target in a more efficient 
way. It is expected that we improve the conver-
gence speed and get closer to the optimal solu-
tion compared to the conventional model-free ML 
approach. Second, to verify the proposed learn-
ing framework, we present a case study for joint 
active and passive beamforming optimization in 
IRS-assisted wireless networks. The remainder of 
the paper is organized as follows. In the following 
section, we provide an overview of IRS-assisted 
wireless networks, emphasizing the performance 
gains and challenging the issues. Then we review 
different applications of ML approaches in IRS-as-
sisted wireless networks. Comparing the optimiza-
tion methods, ML approaches provide enhanced 
flexibility and robustness against uncertain chan-
nel information and inexact system modeling. We  
also reveal some practical challenges to deploy 
ML approaches, mainly due to the requirement 
of offline training or slow convergence in online 
learning. We design an optimization-driven deep 
reinforcement learning (DRL) framework to 
exploit the efficiency of model-based optimization 
methods and the robustness of model-free DRL 
approaches. The basic idea is to split the control 
variables of a complex problem into two parts. 
One part can be learned in the outer-loop DRL 
approach, while the other part can be optimized 
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by solving an approximate problem efficiently. 
As such, we can reduce the search space in the 
outer-loop DRL approach and expect an improve-
ment in the learning efficiency. Following that, 
the case study reveals that the new approach can 
achieve significant improvement by using a small-
er number of learning episodes, compared to 
the model-free DRL approach. Finally, we discuss 
some future research direction.

An overvIew of Irs-AssIsted wIreless systems
The reconfiguration of the IRS relies on tunable 
chips embedded in its structure. Each tunable chip 
is controllable to adapt the phase shift of each scat-
tering element. The performance improvement 
of IRS-assisted wireless networks can be achieved 
by using IRS as either a signal reflector, a signal 
transmitter, or a signal receiver. In the following, 
we discuss different uses of IRS and review design 
challenges in IRS-assisted wireless networks.

Signal Reflector: The IRS can be used to 
reflect the incident radio frequency (RF) signals 
and create an additional link to the receiver. The 
RF signals in the direct link can be combined 
with its reflections at the receiver, or combined 
destructively to suppress information leakage 
to unintended receivers. The enhanced chan-
nel condition implies significant power saving at 
the RF transmitter. The power scaling law in [2] 
shows that the transmit power of an IRS-assisted 
base station can be scaled down in the order of  
1/N2 without compromising the receiver’s per-
formance, where N denotes the size of the IRS. 
The IRS’s reflections can also be used to suppress 
information leakage to illegitimate users. It can be 
more effective to enhance secrecy rate and ener-
gy efficiency by deploying a large-size IRS instead 
of increasing the size of antenna array at the RF 
transmitter [3].

Signal Transmitter: By controlling the phase 
shifts of the IRS dynamically, the signal reflec-
tions can exhibit different radiation patterns and 
be used to carry useful information. This can be 
viewed as a form of backscatter communications 
underlying the RF communications [4]. By using 
a large number of scattering elements, the IRS-
based backscatter communications can generate 
more exotic reflection patterns for information 
communications, leading to a higher data rate 
and a larger transmission range.

Signal Receiver: The scattering elements of 
the IRS can also be used as individual receivers 
for multiuser simultaneous data transmission. 
The IRS can achieve an impressive capacity gain 
by suppressing the interference among different 
transmitters. The large IRS can be divided into 
smaller units, processing individually the received 
signals from different transmitters. The IRS can 
also be used as an array of sensors to estimate the 
position of RF transmitters, based on the received 
signal strengths at the IRS’s scattering elements.

A joint active and passive beamforming opti-
mization is often required to achieve the per-
formance gains in terms of channel capacity, 
transmit power savings, or secrecy enhancement. 
The joint beamforming optimization is typically 
solved by alternating optimization that decom-
poses the IRS’s phase control and the active 
beamforming into two sub-problems. In each 
sub-problem, semidefinite relaxation is usual-

ly required to optimize the beamforming matrix 
by solving a semidefinite program. However, the 
optimization-based methods suffer from the fol-
lowing practical difficulties:
• Computational complexity: A larger size of 

the scattering elements allows more flex-
ible reconfigurability. It also incurs a high-
er computational complexity when passive 
beamforming optimization is coupled with 
the transmitter’s active beamforming. This 
often requires more sophisticated algorithm 
designs with convex approximations and 
decompositions.

• Dynamic channel conditions: The channel esti-
mation is required within each coherent time 
interval for efficient and precise beamforming 
optimization. With a large IRS, more train-
ing overhead is required and the error esti-
mates are inevitable. Hence, the optimization 
methods become costly and unstable due to 
dynamic and uncertain channel information.

• Imprecise modeling: The beamforming opti-
mization is typically built on a simplified sys-
tem model (e.g., static channel conditions and 
continuous phase control). An efficient algo-
rithm design requires convex approximations 
or heuristic decompositions. As such, the opti-
mization solution only provides an approxima-
tion to the original design problem.
The above challenges motivate the use of 

model-free ML approaches to solve the joint 
beamforming optimization problem. In the sequel, 
we first review the applications of ML approaches 
in IRS-assisted wireless systems (Table 1) and then 
analyze the current limitations, which motivate us 
to design a novel optimization-driven ML frame-
work below.

mAchIne leArnIng for  
Irs-AssIsted wIreless systems

ML approaches include supervised and unsuper-
vised learning, depending on the availability of 
labeled samples in the training data. The learn-
ing performance can be improved by leveraging 
deep neural networks (DNNs) to extract hidden 
features of the training data. Reinforcement learn-
ing (RL) makes decisions by continuously inter-
acting with the uncertain environment, which can 
be modeled by a Markov decision process with 
a properly defined system state, action set, and 
the reward function. DRL improves the RL’s learn-
ing performance by using DNNs to approximate 
different components of the RL framework. In 
particular, deep Q-network (DQN) uses DNNs 
to approximate the value function. Deep deter-
ministic policy gradient (DDPG) uses two sets of 
DNNs, namely, the critic and actor networks, to 
estimate the value function and the policy func-
tion, respectively. In the sequel, we briefly review 
the applications of ML approaches in IRS-assisted 
wireless systems.

The reconfiguration of the IRS relies on tunable chips embedded in its structure. Each tunable chip 
is controllable to adapt the phase shift of each scattering element. The performance improvement 

of IRS-assisted wireless networks can be achieved by using IRS as either a signal reflector, a signal 
transmitter, or a signal receiver. 
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Supervised Learning for IRS-Assisted Channel 
Estimation: The channel estimation can be per-
formed in a training period by sending a known 
pilot and then estimating the channel information 
based on the channel response at the receiver. 
It is typically performed at one end point of the 
communication process — for example, the access 
point with higher computational capability. The 
input pilot and the expected channel response can 
be viewed as the labeled data for supervised learn-
ing. The IRS’s channel estimation generally assumes 
one active scattering element in each training 
period, while all the other elements are inactive. 
Hence, a large-size IRS will generate a huge data 
set during channel training, which can be handled 
by data-driven ML approaches. For example, a con-
volutional neural network (CNN) is employed in 
[5] to estimate both direct and cascaded channels 
for an IRS-assisted system based on simulated input 
signals and the expected output channel vectors. 
The well-trained CNN is then used to predict the 
real-time channel conditions. To reduce the train-
ing overhead, the authors in [6] designed a hybrid 
IRS architecture and proposed DNN for channel 
estimation in a millimeter-wave system.

Supervised/Unsupervised Learning for Beam-
forming Optimization: The beamforming optimi-
zation in an IRS-assisted system depends on the 
wireless environment between the RF transceivers 
and the IRS. DNNs can be trained offline to recall 
high-dimensional mapping from the environmental 
features (e.g., channel response and the receiver’s 
location) to the optimal beamforming strategy that 
maximizes the received signal strength [7]. The well-
trained DNN is then used for online prediction of 
the IRS’s optimal phase vector, given the receiver’s 
location. The graph neural network is employed in 
[8] to provide better scalability and generalization 
for beamforming optimization when the network 
conditions change. Unsupervised learning can also 
be used for beamforming optimization to maximize 
the signal-to-noise ratio (SNR) at the receiver by 
properly designing the loss function [9].

DRL for Beamforming Optimization: The  
RL/DRL approaches allow online decision-making 
by interacting with the environment. Consider-
ing a discrete action space, DQN can be used 
to update the IRS’s phase shifts based on the 
observed channel conditions and the receiver’s 
feedback [10]. The continuous phase vector can 
be directly optimized by DDPG to maximize the 

received SNR [11] or the sum rate [12]. These 
works reveal that DDPG can achieve comparable 
performance to that of the conventional optimiza-
tion-based algorithms. DDPG can also be used to 
enhance physical layer security of IRS-assisted sys-
tems by beamforming optimization to minimize 
information leakage to eavesdroppers [13].

Compared to optimization-based methods, the 
ML approaches in IRS-assisted systems demon-
strate more flexibility and robustness against uncer-
tain information, imprecise modeling, and dynamic 
environment. However, their practical implementa-
tions are still challenging, mainly due to the require-
ment of offline training or slow convergence in 
online learning. In particular, the DNN trainings in 
[5–9] rely on a sufficiently large set of training data. 
The training data is typically generated from simpli-
fied models, which may introduce systematic bias 
for online prediction. Though RL/DRL methods 
learn to make decisions from scratch [10–13], they 
are subject to slow convergence by interacting with 
the environment. The online exploration becomes 
inefficient with large action and state spaces.

optImIzAtIon-drIven deep reInforcement 
leArnIng frAmework

Here, we aim to improve the learning efficacy 
by proposing a new learning framework that 
exploits the efficiency of model-based optimiza-
tion methods and the robustness of model-free 
ML approaches. The authors in [14] studied a sim-
ilar concept of model-aided artificial intelligence 
in wireless systems. The model-based optimiza-
tion is used to create a large set of offline training 
data for optimizing or refining the DNN models. 
This idea has been verified in IRS-assisted wireless 
systems to create training data sets for beamform-
ing optimization, as in [7] and [9]. It works well, 
given either an accurate model or a tractable opti-
mization solution. Different from [14], we used 
the DRL approach to build a robust outer-loop 
learning framework that is tolerable to uncertain 
information and system dynamics. We used the 
inner-loop optimization methods in the online 
learning phase to fast-track the control variables 
by solving approximate optimization problems 
efficiently. Comparing to [7, 9, 14], such an opti-
mization-driven DRL framework can be applied 
to more complex wireless systems with both inac-
curate models and intractable solutions. In the 

TABLE 1. ML applications in IRS-assisted wireless networks.

REF System ML approach Objective Conclusions

[5] MIMO CNN Channel estimation More robust performance

[6] MIMO DNN Channel estimation Achieve a considerable error performance with a small number of active elements

[7] OFDM DNN Data rate Achieve the upper bound with perfect CSI

[8] MISO GNN Sum rate Provide generalizability and improve sum-rate performance with fewer pilots

[9] MISO DNN Received SNR Comparable with the SDR-based optimization

[10] MISO DQN Energy efficiency Energy efficiency increased by 77.3 percent

[11] MISO DDPG Received SNR Close-to-optimal SNR with low time overhead

[12] MISO DDPG Sum rate Comparable with optimization methods

[13] MISO DQN Secrecy rate Improved secrecy rate and quality of service
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sequel, we first analyzed the drawbacks of the 
conventional DRL approaches and then present-
ed our optimization-driven DRL approach.

conventIonAl model-free dQn And ddpg AlgorIthms
DQN and DDPG are two conventional DRL algo-
rithms that use DNNs to approximate the value 
and policy functions of the RL framework, respec-
tively. To distinguish them from our algorithm 
design in this paper, we describe the conventional 
DQN and DDPG as “the model-free DRL algo-
rithms” because they do not require exact system 
modeling and model-based optimization formu-
lation. Generally, the model-free DQN algorithm 
is a natural extension of the traditional Q-learning 
method with finite action and state spaces. In wire-
less works, the model-free DQN can be used for 
optimizing the channel allocation, relay selection, 
user association, etc., which can be described by 
discrete control variables. It relies on the use of 
experience replay and target Q-network to sta-
bilize the learning performance. The experience 
replay mechanism randomly selects a minibatch 
from a buffer of historical samples to train the 
DNN. As illustrated in Fig. 1a, the DNN training 
updates the DNN parameters of the online Q-net-
work by minimizing the temporal difference error 
— that is, the mean squared difference between 
the online and the target Q-values. To stabilize 
the learning performance, DQN estimates the 
target Q-value by using a separate DNN, name-
ly, the target Q-network, whose parameters are 
delayed copies of the online Q-network after a 
few decision epoches. The same idea also applies 
to the DDPG algorithm, which is an extension 
of the DQN algorithm to more complex control 

problems involving continuous variables (e.g., the 
RF transmit power and the IRS’s phase shifts). As 
shown in Fig. 1b, the Q-value estimation in the 
DDPG algorithm is accompanied by a separate 
target Q-network, whose parameters are also 
evolving from the online Q-network.

Though the target Q-network in DQN or 
DDPG stabilizes the learning performance, the 
strong coupling between the online and target 
Q-networks may lead to a slow learning efficien-
cy and reduced reward performance. First, both 
Q-networks can be randomly initialized and far 
from their optimum in the early stage of learn-
ing. This may mislead the learning process and 
require a large set of historical transition samples 
to ensure that the learning is correct. As such, the 
model-free DQN and DDPG practically require 
a long warm up period to train the online and 
target Q-networks. Second, it is problematic to 
configure the parameter copying from the online 
Q-network to the target Q-network. As shown in 
Fig. 1b, a small averaging parameter t in DDPG 
can stabilize but also slow down the learning 
process, while a large t implies strong correlation 
between the two Q-networks, resulting in perfor-
mance fluctuations and even divergence.

optImIzAtIon-drIven dQn And  
ddpg AlgorIthms

To improve learning efficiency, we design the opti-
mization-driven DRL framework that integrates 
the model-based optimization into the model-free 
DRL framework. We aim to stabilize and speed 
up the learning process by estimating the target 
Q-value in a better-informed and independent 

FIGURE 1. The comparison of model-free and optimization-driven DQN/DDPG algorithm: a) model-free DQN algorithm; b) model-free 
DDPG algorithm; c) optimization-driven DQN algorithm; d) optimization-driven DDPG algorithm.
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way. The motivation for the proposed framework 
stems from the following observations: The control 
variables of a complex problem are usually high 
dimensional and intractable by classical optimiza-
tion methods. However, given a part of the control 
variables, the other part can easily be optimized in 
an approximate problem by exploiting the physical 
dependence among different control variables.

The main design principle is to split the con-
trol variables into two parts. One part can be 
obtained in the outer-loop DQN or DDPG with 
a reduced search space, while the other part can 
be optimized instantly and efficiently given the 
outer-loop control variables. Therefore, the split-
ting of control variables becomes a critical design 
problem. It determines the outer-loop learning 
performance as well as the computational com-
plexity of the inner-loop optimization problem. 
One intuition for control variable splitting is to 
break the couplings among control variables and 
ensure that the inner-loop optimization is efficient 
and light-weight. To ensure robustness, the inner-
loop optimization should be insensitive to the 
changes of system parameters (e.g., the channel 
state information) due to imprecise system model-
ing. In the sequel, we present two specific designs 
of the optimization-driven DRL.

Optimization-Driven DQN: For a mixed prob-
lem with both discrete and continuous decision 
variables, we can split the action vector into two 
parts — the discrete and continuous variables (at, 
at

c) as shown in Fig. 1c. The discrete actions can 
be updated by the model-free DQN. Given the 
discrete actions in the outer loop, we can resort 
to the optimization method to efficiently solve the 
continuous actions in a convex approximation of 
the original problem. The optimized actions can 
be combined with the discrete actions and then 
executed in the radio environment. One applica-
tion of the optimization-driven DQN is the relay 
selection in an IRS-assisted wireless network. The 
outer-loop DQN can be used to pick the best 
relay node, while the inner-loop optimization 
determines the joint active and passive beam-
forming strategy given the relay selection strategy.

Optimization-Driven DDPG: For a high-di-
mensional continuous control problem, it is usu-
ally difficult to optimize all control variables in a 
single problem (e.g., due to non-convex problem 
structure). The model-free DQN algorithm also 
becomes inflexible as the continuous action and 
state spaces slow down the online learning perfor-

mance. Similar to the optimization-driven DQN, 
we can follow the divide and conquer strategy to 
break the couplings among different control vari-
ables. In particular, we can learn a part of the con-
trol variables by the model-free DDPG algorithm, 
while solving the other part by optimization meth-
ods. As illustrated in Fig. 1d, when the outer-loop 
DDPG generates a part of the actions, an optimi-
zation module can be used to solve the other part 
of the action vector directly and provide a lower 
bound on the original problem. The splitting of the 
action vector should be properly designed so that 
the model-based optimization can be solved effi-
ciently with a reduced computational complexity. 
For example, given the IRS’s passive beamforming, 
the active beamforming can easily be optimized 
in an approximate convex problem. This implies 
that we can use outer-loop DDPG to search for the 
passive beamforming while optimizing the active 
beamforming in the inner loop.

From the above analysis, we highlight new fea-
tures and novelties of the optimization-driven DRL 
framework:
• First, the optimization-driven DRL framework 

provides a general solution framework for com-
plex problems that suffer from uncertain system 
dynamics, imprecise modeling, and high com-
putational complexity. Compared to the mod-
el-free DRL methods, the optimization-driven 
DRL can reduce the search space and poten-
tially improve the learning performance.

• Second, the control variable splitting offers 
a flexible trade-off between the efficiency of 
model-based optimization methods and the 
robustness of model-free DRL approaches. 
We can optimize the splitting of control vari-
ables according to resource constraints on 
computation capabilities, training overhead, 
and solution accuracy. In one extreme case, 
we can leave all control variables to the DRL 
approaches. This degenerates to the mod-
el-free DRL, which requires more training 
overhead. In the other case, all control vari-
ables can be solved by model-based opti-
mization methods. However, this becomes 
inflexible and computational, requiring com-
plex and dynamic systems.

• Third, we realize a novel online integration 
of model-based optimization and model-free 
DRL methods. Previous works typically use 
model-based optimization methods to sim-
ulate the data set for offline training [14], 

FIGURE 2. The application of optimization-driven DRL framework in IRS-assisted multi-input single output downlink system. Given the 
system information, the access point (AP) can search the optimal solution (rt, qt, wt) at the beginning of each data transmission 
frame. The optimal solution is then executed by the AP and the IRS, respectively.
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whereas we integrate model-based opti-
mization into the online decision-making 
cycles. Based on incomplete information, 
the inner-loop optimization provides a lower 
bound to the original problem, which can 
be used as a better-informed target Q-value 
for the outer-loop DNN training, especially 
in the early stage of learning. Besides, the 
optimization-driven target is independent 
of the online Q-network and can be more 
stable than the target Q-network. Such a 
decoupling between the online and target 
Q-networks can reduce the performance 
fluctuations and stabilize the learning faster.
To summarize, the optimization-driven DRL 

relies on the optimization module to guide its learn-
ing toward a better reward in a more stable and 
efficient way. Different from the supervised learning, 
the optimization-driven target is not given explicit-
ly by the environment, but estimated by the DRL 
agent based on local observations in the online 
learning phase. Moreover, the optimization-driven 
DRL belongs to the DRL framework, which can be 
flexibly applied to different control problems with 
uncertain system dynamics, while the supervised 
learning is applicable to the cases when the test-
ing data and the training data share similar features. 
That is, the features embedded in the training data 
can be extracted and applied to the testing data.

cAse study: optImIzAtIon-drIven ddpg for 
pAssIve beAmformIng

In this section, we examine the application of the 
optimization-driven DRL framework in an IRS-as-
sisted multi-input single output downlink system. 
As illustrated in Fig. 2, the information transmis-
sions from a multi-antenna access point (AP) 
to the receivers are assisted by the IRS with N 
reflecting elements. A few assumptions are listed 
as follows:
• The IRS sets a continuous phase shift and a 

flexible magnitude of reflection to reflect the 
incident RF signals. The extension to discrete 
phase shift is straightforward by limiting the 
feasible phase shift in a discrete set.

• The IRS is self-sustainable by harvesting RF 
energy. By controlling the magnitude of 
reflection, namely, the power-splitting (PS) 
ratio, a part of the incident signals is reflected 
to the receiver, while the other part can be 
absorbed by the IRS to sustain its operations.

• The channel information is uncertain due to 
estimation errors by the use of passive ele-
ments. The average channel estimates can 
be known by historic measurements, while 
the error estimates are randomly distributed 
within a convex and bounded set.
We aim to minimize the AP’s transmit power 

by a joint beamforming optimization subject to 
the IRS’s power budget and the receiver’s SNR 
requirement similar to that in [15]. The control 
variables include the AP’s active beamforming 
w, the IRS’s PS ratio r, and the phase vector q, 
as illustrated in Fig. 2. This problem is challenged 
by the non-convex coupling between the active 
and passive beamforming. The conventional alter-
native optimization method faces high computa-
tional complexity and becomes more difficult with 
uncertain channel information.

splIttIng control vArIAbles

We employ the optimization-driven DDPG to 
update the action at = (rt, wt, qt) in each decision 
epoch, which can be divided into two parts, the PS 
ratio rt and two vectors (wt, qt). Given the PS ratio 
rt in the outer-loop DDPG, we can easily deter-
mine a feasible phase vector qt and then solve the 
optimal active beamforming wt efficiently in a con-
vex optimization problem. As shown in Fig. 1d, 
the actor and critic networks of DDPG first gen-
erate the action and value estimates independent-
ly. Then, we fix the PS ratio rt and feed it into the 
optimization module, which outputs the optimized 
solution (wt, qt) and also evaluates a lower bound 
on the target Q-value. If the optimization-driven 
target value is larger than the output of the target 
Q-network in the outer-loop DDPG algorithm, we 
can use it with a higher probability as the new 
target Q-value for DNN training; meanwhile, we 
update the action by the optimized solution. The 
splitting of control variables can also be performed 
in a different way. As the IRS’s phase vector qt is 
difficult to optimize directly, we can search it by 
the outer-loop DDPG. Then, we can optimize the 
other variables (rt, wt) efficiently by a line search 
algorithm over rt. Such a decomposition not only 
reduces the search space of the outer-loop DDPG, 
but also improves learning efficiency compared to 
the model-free DDPG.

numerIcAl evAluAtIon
The simulation follows the system model in Fig. 2. 
The AP-user distance in meters is dAP,User = 20. The 
vertical distance from the IRS to the AP-user line 
segment is given by dIRS,User =5. Let dAP,IRS denote 
the horizontal distance from the AP to the IRS. The 
path loss at the unit distance is L0 = 30 dB and the 
path-loss exponent equals 3.5, similar to [2]. The 
energy harvesting efficiency is h = 0.5. The noise 
power is –80 dBm. The reward of the outer-loop 
learning agent is defined as the ratio between the 
successfully transmitted data and the AP’s total 
energy consumption. The size of IRS is N = 20 
and the number of AP’s antennas is M = 2. The 
DNN network structure and hyperparameters of 
the DDPG algorithms are listed in Table 2, where 
fc(m, n) denotes a fully connected neural network 
layer with the size of m  n, relu and sigmoid 
denote different activation layers. The sizes of state 
and action spaces are specified by N_STATES and 
N_ACTIONS, respectively. In particular, for M = 2 
and N = 20, the sizes of different control variables 
(qt, wt, rt) can be easily determined as 40, 4 and 
1, respectively. For fair comparison, we employ the 
same network structure for two DDPG algorithms. 
The difference between the optimization-driven 
and model-free DDPG algorithms lies in the size N_
ACTIONS of action space. By the splitting of control 
variables, only a portion of the control variables are 
trained in the optimization-driven DDPG algorithm.

Better Reward Performance: Figure 3a 
demonstrates the dynamics of the AP’s transmit 
power in the optimization-driven DDPG (denoted 
as the O-DDPG) compared with the conventional 

Different from the supervised learning, the optimization-driven target is not given explicitly by the envi-
ronment, but estimated by the DRL agent based on local observations in the online learning phase. 
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DDPG (denoted as the model-free DDPG). We 
consider different inner-loop optimization prob-
lems in the O-DDPG algorithms. In the fi rst case, 
given the PS ratio rt learned by the outer-loop 
DDPG, we optimize (wt, qt) by a heuristic optimi-
zation method. In the second case, we search the 
passive beamforming qt in the outer-loop DDPG 
while optimizing (rt, wt) by a bisection method. 
The inner-loop optimization solutions in both 
cases are used to guide the search for the optimal 
action (rt, wt, qt). As the inner-loop optimizations 
generally provide better informed Q-value esti-
mations, the O-DDPG algorithms can converge 
faster than the model-free DDPG and signifi cantly 
decrease the AP’s transmit power.

Faster and Stable Learning: In Fig. 3a, 
we also observe that the shaded areas of the 
O-DDPG algorithms are smaller than that of 
the model-free DDPG. This implies a more sta-
ble learning performance in the O-DDPG algo-
rithms. We characterize the stability by the 
variance of reward over learning episodes. As 
shown in Fig. 3b, the rewards in two O-DDPG 
algorithms have smaller variances compared to 
that of the model-free DDPG. The convergence 
in the O-DDPG algorithms comes earlier, as the 
variance of reward gets closer to zero after a 
smaller number of learning episodes. It is clear 
that the O-DDPG algorithms stabilize after 106

episodes while the model-free DDPG requires 
75 percent more episodes.

Optimal Deployment Location: Figure 4 
shows the AP’s transmit power when the IRS 
moves away from the AP to the receiver. The 
ideal situation is while the IRS’s power demand 
is negligible, the IRS is always active and help-
ful to the AP’s information transmission. Given a 
fi xed SNR requirement at the receiver, the AP can 
reduce its transmit power signifi cantly as the IRS 
moves closer to the receiver, as shown in Fig. 4a. 
This corroborates the previous observation in [2] 
that it is preferable to deploy the IRS closer to the 
receiver. However, in a more practical case with 
non-zero power demand at the IRS, the AP has 
to increase its transmit power to fulfill the IRS’s 
power demand as it moves away from the AP, as 
shown in Fig. 4b. The reason is that a part of the 
AP’s radio frequency (RF) power will be harvested 
by the IRS to sustain its operations. As the AP-IRS 
distance increases, the IRS will harvest a larger 
part of the AP’s RF power by tuning the PS ratio, 
and thus contribute very little to the AP’s informa-
tion transmissions. This implies that the IRS should 
not be deployed far away from the RF transmitter, 
which is in contrast to the observation in [2] and 
reveals that the IRS’s power demand becomes 
an important design aspect for the IRS’s optimal 
deployment in wireless systems.

chAllenges And future dIrectIons
control vArIAble splIttIng

The optimization-driven DRL divides the control 
variables into outer-loop learning and inner-loop 
optimization. This optimal division has to be care-
fully designed to achieve a balance between the 
computational complexity of optimization meth-
ods and the time effi  ciency of learning methods. 
Currently, there are no universal rules to guide the 
problem decomposition and control variable split-
ting. For the same control issue, we have diff erent 
ways to split the control variables, which may lead 
to diff erent learning performances. Hence, one of 
the future research directions is to study a system-
atic and analytical method to quantify the quali-
ties of diff erent splitting strategies.

performAnce trAde-off
The outer-loop learning has a reduced action 
space, which implies an increased learning speed 
with the potential cost of performance loss. The 
model-free DRL can flexibly explore the action 
space and efficiently exploit the best reward as  
learning continues. With a reduced action space, 
the optimization-driven DRL can achieve higher 

TABLE 2. Network structure and hyperparameters in DDPG.

Component DNN structure Hyperparameter Value

Critic

fc(N_STATES, 64), fc(N_ACTIONS, 64) batch size 32

relu learning rate (critic) 1e–4

fc(64, 1) learning rate (actor) 1e–3

Actor

fc(N_STATES, 64) reward discount 0.5

fc(64, N_ACTIONS) memory capacity 1000

sigmoid replacement factor 0.01

FIGURE 3. a) the AP’s transmit power in diff erent 
DDPG algorithms. The solid line denotes 
the median of 50 repetitions and the shaded 
regions in diff erent colors cover 10th to 90th 
percentiles. b) the optimization-driven DDPG 
(O-DDPG) algorithms achieve more stable 
learning and faster convergence than the con-
ventional model-free DDPG algorithm. The 
AP’s and user’s locations are set as dAP,User = 
20, dAP,IRS = 10, dIRS,User = 5.

(a)

(b)
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convergence speed. However, the overall reward 
can also be affected, especially when a portion 
of the control variables are constrained by impre-
cise physical models and generally solved by the 
model-based optimization. As such, the learning 
efficiency and reward performance become two 
conflicting goals in the optimization-driven DRL. 
In our future work, the convergence performance 
can be further analyzed. Furthermore, it is worth 
exploring the trade-off between learning efficien-
cy and reward performance, which will guide the 
optimal splitting of control variables.

AdAptIve IntegrAtIon
The optimization method improves the learning 
efficiency significantly in the initial stage while 
contributing little as the reward increases. In 
the initial stage, the learning process intends to 
explore random actions without sufficient train-
ing samples from the past experiences. As such, 
the optimized action will be more often selected 
by the DRL agent as it provides a relatively better 
reward. This implies an adaptive integration of the 
optimization and learning methods during the sys-
tem’s evolution. We expect that it is not necessary 
to perform frequent and computation-intensive 
optimization in each learning episode. Hence, the 
adaptive integration allows the DRL agent to exe-
cute the optimization module on demand, such as 
only when the outer-loop variables or the reward 
performance have been changed significantly.

optImIzAtIon-drIven multI-Agent leArnIng
This work shows the feasibility and benefits of an 
integration between model-based optimization 
and the model-free DRL. The design of other opti-
mization-driven ML approaches, or a combina-
tion of them, is worth further investigation. For 
example, we can extend the optimization-driven 
DRL concept to multi-agent systems, in which an 
individual agent makes its own decision based on 
the observations and actions of the other agents. 
This implies a large set of training data and 
slow convergence if we employ the convention-
al multi-agent DRL methods. Instead, by solving 
model-based optimization locally, each agent can 
estimate the optimal actions of the other agents, 
which may help guide its learning toward a better 
reward with enhanced learning efficiency.

ApplIcAtIon to nonlIneAr bAckscAtter chAnnel estImAtIon
The Internet-of-Things (IoT) requires ultra-low 
power communication, such as backscatter com-
munication, as IoT devices should be operated 
with limited power and complexity for self-sus-
tainability. The recent effort has been directed to 
deploying wireless-powered backscatter commu-
nication (WPBC) networks. In this context, the 
energy beamforming for wireless energy transfer   
to IoT devices and the receiver beamforming for 
wireless information transmission are the prerequi-
sites for effective deployment of WPBC, for which 
the channel estimation is challenging because of 
the nonlinear backscatter channels. The existing 
LS/MMSE methods for backscatter channel esti-
mation are not optimal, so that we may apply the 
optimization-driven ML method for such nonlin-
ear backscatter channel estimation, in conjunction 
with the LS/MMSE methods for enhanced learn-
ing efficiency.

conclusIon
In this article, we have reviewed the applications 
of ML approaches in IRS-assisted systems. An 
inspection of the common limitations of existing 
ML approaches has motivated us to design a 
novel optimization-driven DRL framework for the 
joint beamforming optimization problem. Numer-
ical results have demonstrated that the proposed 
approach improves the learning efficiency and 
reward performance significantly compared to the 
conventional model-free DRL methods.
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FIGURE 4. The AP’s transmit power varies as the IRS 
moves from the AP to the receiver: a) the IRS’s 
power demand is neglectable in the ideal case. 
The AP-User distance is dAP,User = 50 meters; 
b) the IRS has the constant power demand of 
20 mW, which has to be fulfilled by RF energy 
harvesting. The AP-User distance dAP,User = 20 
meters.
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