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Rate-Energy Tradeoff and Decoding Error
Probability-Energy Tradeoff for
SWIPT in Finite Code Length

Il-Min Kim , Senior Member, IEEE, Dong In Kim , Senior Member, IEEE, and Jae-Mo Kang

Abstract— In this paper, the fundamental performance of the
simultaneous wireless information and power transfer (SWIPT)
system is studied. Unlike any existing works where the codelength
was assumed to be infinity, we explicitly consider the case of the
finite codelength, which is much more realistic especially for the
practical SWIPT system due to its limited power and complexity.
For the four well-known SWIPT schemes, we analyze the tradeoff
between the rate and energy; then we study the optimality of
those SWIPT schemes. Furthermore, to fully characterize the
fundamental performance of the SWIPT system in the regime of
finite codelength, we propose to additionally use the new tradeoff
between the decoding error probability and the harvested energy.
In the sense of this new tradeoff, we study the optimality of
the four SWIPT schemes. For the analysis of the two types of
tradeoffs, we consider two different cases: when the transmit
power of symbols is adapted or not. For various scenarios,
we provide useful insights into the performance of the SWIPT
system in the finite codelength.

Index Terms— Decoding error probability-energy tradeoff,
energy harvesting, finite codelength, rate-energy (R-E) tradeoff,
SWIPT, transmit power adaptation.

I. INTRODUCTION

ENERGY harvesting is one of the promising solutions
to future energy-constrained or battery-limited networks

such as sensor networks [1]–[9]. There are various different
energy harvesting approaches having different applications.
For example, one traditional approach for energy harvesting
is to use solar panels and this approach is very promis-
ing in ceratin applications, e.g., supplying electricity in
housing applications. The other possible energy harvesting
approach is to utilize radio frequency (RF) signals, which
has recently drawn the upsurge of research interest in the
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literature [1]–[9]. Compared to the traditional energy harvest-
ing approaches based on renewable energy sources such as
solar, wind, and so forth, the RF energy harvesting technology
is more advantageous in the following important aspects: pre-
dictability, controllability, accessibility, and deployability [4].
In this paper, we focus on the RF energy harvesting technique.

The most useful way to use the RF signals is to transmit
information from one place to another, which is called the
wireless information transfer (WIT). On the other hand, one
can use the RF signals to send energy from an energy
source to another device [1]–[3], which is called the wireless
power transfer (WPT). Given those two technologies, a nat-
ural extension is to combine them in a single framework,
namely, simultaneous wireless information and power trans-
fer (SWIPT) [4]–[9]. The practical feasibility of the SWIPT
has been addressed in many surveys such as [4]– [6] and in
many studies such as [15]–[19]. Also, the SWIPT systems have
many practical applications particularly targeted for supporting
low-powered devices such as RF identification (RFID) tags
and wireless sensors [4]. One critical issue for the SWIPT
is that the wireless power transfer distance may not be very
long due to the significant attenuation of the signal power.
However, it is possible to considerably increase the distance by
utilizing larger size antennas (e.g., array antennas) or utilizing
more antenna elements given the whole transmitter/receiver
size using higher frequency carriers [9], [10].

In the earlier publications on the SWIPT, it was often
assumed that both information decoding and energy harvesting
could be carried out at the same time from the same received
signals [11]–[14]. These days, however, such assumption is
generally considered to be impractical due to the limitations
of the current practical circuits [15]. Instead, it is mostly
assumed that, for information decoding and energy harvest-
ing, the received signal should be split in the power or in
the time. Specifically, four SWIPT schemes were studied in
[15] and [16]: the dynamic power splitting (DPS), on-off
power splitting (OPS), static power splitting (SPS), and time
switching (TS). The DPS is the most general scheme, in which
each of the received signals can be split into two portions
with a different power splitting ratio: one portion used for
information decoding and the other for energy harvesting. The
OPS can be considered as a special case of the DPS. The SPS
and TS can be considered as two special cases of the OPS,
and thus, the DPS.
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The performance of the SWIPT system is characterized
by both the data rate and the harvested energy, because the
performance measures of the WIT and WPT systems are the
data rate and the harvested energy, respectively. Particularly,
in the SWIPT system, there exists a fundamental tradeoff
between the data rate and the harvested energy, namely rate-
energy (R-E) tradeoff, because the same received signal cannot
be simultaneously used for both information decoding and
energy harvesting at the same time. Studying the R-E tradeoff
is a very effective and fundamental way to understand the
performance of the SWIPT systems and to compare differ-
ent SWIPT systems. For this reason, in the literature, the
R-E tradeoff was extensively studied. Assuming the Gaussian
input, the R-E tradeoffs of the four SWIPT schemes were
studied in [16] for single-antenna terminals. In [15], the R-E
tradeoff was studied for multi-antenna broadcasting channels.
Very recently, in [17], considering the discrete input, the
R-E tradeoff was studied. In [18], the tradeoff between the
information and power transfer was investigated in multiuser
OFDM systems.

In all previous works on the R-E tradeoff for the
SWIPT [15]–[18], the Shannon capacity was used as the
measure of the data rate. However, the use of Shannon capacity
can be justified only when the error correction code is (very)
long, even not infinitely long. Unfortunately, for the most
SWIPT applications (e.g., for the practical SWIPT devices
such as RFID tags and sensors), using (very) long codes is
indeed often challenging due to the limited complexity and
the limited power budget: the energy harvesting receiver runs
the decoding circuitry using the (limited) harvested energy,
and this makes decoding of very long codes challenging. Fur-
thermore, when the OPS and TS schemes are used, the actual
e f f ective codelength becomes even shorter, because some
received signals within a codeword are not used for informa-
tion decoding at all (i.e., those signals are used only for energy
harvesting). In practice, vast majority of the received signals
might need to be used only for energy harvesting, because
of the very low efficiency of WPT, which requires longer
time than information decoding. Overall, using the codelength
that is (very) long enough to justify the Shannon capacity
should be infeasible for the SWIPT system. To the best of our
knowledge, this issue has never been addressed in the literature
for the SWIPT. This motivated us to, in this paper, study the
R-E tradeoff of the SWIPT system taking into account the
f ini te codelength.

Another novel aspect of this work is that we propose to use
a new tradeoff between the decoding error probability and the
harvested energy. In the literature on the R-E tradeoff for the
SWIPT system [15]–[18], the decoding error probability was
not explicitly considered, because the error probability could
be assumed to be essentially zero when the Shannon capacity
was adopted as the rate performance measure.1 Although
some error probability was analyzed for the SWIPT system
in [16, Sec. VII], the system considered was the simplistic
uncoded system; thus, the rate was simply log2 M (rather than

1Note that the decoding error probability approaches zero as the codelength
goes to infinity when the data rate is smaller than the Shannon capacity.

Shannon capacity), where M was the modulation/constellation
size. However, in practical wireless communications, error
correction codes should be used, because uncoded systems
exhibit very poor performance. To the best of our knowledge,
there has been no work in the literature to study the decoding
error probability of the coded SWIPT system, not to mention
the tradeoff involving the decoding error probability for the
SWIPT system. Motivated by this, in this paper, we analyze
the decoding error probability of the SWIPT system and we
study the fundamental tradeoff between the decoding error
probability and the harvested energy.2

In the practical scenario of the finite codelength, the perfor-
mance of the SWIPT system can be fully characterized only
when both tradeoffs are revealed: (i ) the R-E tradeoff and
(i i ) the new tradeoff between the decoding error probability
and harvested energy. To analyze these tradeoffs, we consider
two different scenarios of transmit power adaptation. The main
contributions of this paper can be summarized as follows.

� For any finite codelength, in addition to the R-E tradeoff,
we propose to use a new tradeoff between the decoding
error probability and the harvested energy, which has
never been studied in the literature.

� For any finite codelength, we analyze both the R-E trade-
off and the decoding error probability-energy tradeoff for
the scenarios with and without transmit power adaptation.
We analytically prove the optimalities of the OPS in
both senses of the R-E tradeoff and the decoding error
probability-energy tradeoff. From our analysis, one can
make an important conclusion that the OPS is universally
optimal for any codelength. Also, we provide various use-
ful insights into the fundamental performance tradeoffs
for the SWIPT system with finite codelength.

� For any codelength, we derive the power adaptation
schemes for the OPS and TS. From the obtained results,
it turns out that the power adaptation for the SWIPT
system in the finite codelength is very different from that
in the infinite codelength.

� With the decoding error probability, we also study an
interesting performance tradeoff of the SWIPT system,
namely, the tradeoff between the effective throughput and
the energy.

This paper is organized as follows. In Section II, the system
model is presented, and the relevant information theory and
the previous results on the SWIPT system are reviewed.
In Section III, the decoding error probabilities of the four
SWIPT schemes are analyzed. In Section IV, the R-E tradeoff
of the SWIPT system is studied in the finite codelength
for two different power adaptation scenarios. In Section V,
the new tradeoff between the decoding error probability and

2More specifically, our motivations of investigating the decoding error
probability-energy tradeoff are explained as follows. Most of all, one needs
to explicitly consider the decoding error probability issue in practical systems
to avoid unnecessary retransmission with long delay. Next, to study the
fundamental performance tradeoff of the finite codelength SWIPT system,
one should consider the decoding error probability-energy tradeoff because
its region is not empty due to nonzero decoding error probability. Finally,
in certain scenarios of the SWIPT, the target rate might be given due to the
delay-limited transmission. In this case, the performance of interest is in the
tradeoff between decoding error probability and the harvested energy, rather
than that between the achieved rate and the harvested energy.
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the harvested energy is studied in the finite codelength for two
different power adaptation scenarios. The paper is concluded
in Section VI.

Notation: For a random variable X , we use X � CN (0, � 2)
to denote the circularly symmetric complex Gaussian random
variable with zero mean and variance � 2. For a set � , we use
� C to denote the complement of � . The notation �x�N stands
for �x N�/ N , where �y� denotes the smallest integer greater
than or equal to y.

II. SYSTEM MODEL AND SWIPT SCHEMES

A. Message Transmission and Decoding Error Probability

The source message M composed of K bits are encoded by
a code (or a codebook) C at the transmitter. The codebook
C is composed of M = 2K codewords, each of which is of
length N . The encoding is carried out by mapping the message
M to one of the M codewords in the codebook C. The data
rate R is thus given by

R =
log2 M

N
=

K

N
(bits/ channel use). (1)

In this paper, as in numerous publications in the literature, we
use the well-known standard Gaussian codebook approach: the
Gaussian codebook is composed of M independent codewords
and each element of a codeword is randomly generated by the
complex Gaussian probability distribution with zero mean and
unit variance, CN (0, 1).

Assume that the codeword selected from the codebook is
transmitted in the form of frame. The transmit symbols in each
frame are denoted by {xk : k = 1, 2, • • • , N}. The power of xk

is one, i.e., E[|xk|2] = 1, because xk is generated by CN (0, 1).
Each transmitted symbol xk is amplified by a factor of

�
pk ;

that is, the actual transmitted signal at the kth symbol period is
given by

�
pkxk . Thus, the transmit power of the kth element

of the codeword is given by pk , i.e., E[|�pkxk |2] = pk . In this
paper, assuming the symbol duration is one, the power and
the energy are used interchangeably. The signals,

�
pkxk , k =

1, • • • , N , are transmitted over a channel with gain |h|, which
is fixed over the duration of a frame.3 In our work, the receiver
is assumed to know the channel state information (CSI) to
coherently decode the transmitted codeword. At the receiver
side, the received signals are denoted by yk , k = 1, 2, • • • , N .

Let M’ denote the message decoded at the receiver side.
Let Pr(M �= M’|C) denote the decoding error probability
given code C of length N . Let Pe

N (R) = E[Pr(M �=
M’|C)] denote the decoding error probability averaged over the
ensemble of all codes. This ensemble average decoding error
probability will be simply referred to as the decoding error
probability or error probability whenever there is no ambiguity.

3In our case of the finite codelength SWIPT system, the quasi-static channel
assumption is quite reasonable for the following two important reasons. First,
in the practical range of the codelength N � O(103) or N � O(104),
the practical wireless channel is indeed quasi-static due to (much) shorter
transmission duration of the codeword than the channel coherence time [26].
Second, in almost all cases, the SWIPT is currently feasible only for stationary
environments with low mobility, e.g., indoor scenario over fixed range of
distances (e.g., in the range of 3–15m at the carrier frequency of 2.4GHz) [4].
In this situation, the channel can be reasonably assumed to be quasi-static due
to sufficiently long coherence time.

Although deriving the exact decoding error probability is
generally impossible, it is possible to derive an upper-bound
of decoding error probability. Specifically, the error probability
Pe

N (R) is upper-bounded as follows [20, Th. 5.6.2]:

Pe
N (R) = E[Pr(M �= M’|C)] � Pup

N (R) (2)

where the upper-bound Pup
N (R) is given by

Pup
N (R) = exp (�N {E0 � � R ln 2}) (3)

for any 0 � � � 1. In this equation, E0 is called the Gallager
function and given by

E0 = � ln
�

y

� �

x
q(x) f (y|x)

1
1+� dx

� 1+�

dy (4)

for any 0 � � � 1, where q(x) is the input distribution, which
is Gaussian in this paper. Also, f (y|x) represents the channel
transition probability, i.e., the probability distribution of output
y given input x . Since the upper-bound Pup

N (R) is valid for
any 0 � � � 1, the bound can be tightened by optimizing � ,
i.e., min0�� �1 Pup

N (R).
Remark 1: In the high rate region Rcr � R < C , where

C is the capacity and Rcr = � E0
� �

�
�
�
� =1

denotes the critical

rate, it was shown that the Gallager bound of (2) is tight
[20, Sec. 5.8]. Also, very recently, it was proved that the
Gallager bound is tight even for the low rate region 0 < R <
Rcr [24]. In order to demonstrate the tightness of the Gallager
bound, let E(R) denote the exponent of the error probability
upper bound Pup

N (R) of (3) (tightened over 0 � � � 1), which
is given by

E(R) = max
0�� �1

[E0 � � R ln 2] (bits/ channel use) (5)

where E0 is given by (4), which is a function of � . In the lit-
erature, a very well-known lower bound of the decoding error
probability is the sphere-packing lower bound. Let Esp(R)
denote the exponent of the sphere-packing bound, which is
given by [23, eq. (3.6.47)]

Esp(R) = sup
� �0

[E0 � � R ln 2] (bits/ channel use). (6)

In Fig. 1, we numerically plot the random coding exponent
E(R) and the sphere packing exponent Esp(R) versus the rate
Rcr � R < C over the Gaussian channel when the signal-
to-noise ratio (SNR) is 10 dB and the input is the Gaussian
distribution. From Fig. 1, it can be clearly seen that the two
exponents E(R) and Esp(R) meet, which means that the
upper-bound of (3) is tight. �

B. Four SWIPT Schemes

In this paper, the received signals of the SWIPT system are
classified into two groups depending on how they are used by
the receiver.4 First, if the receiver uses some portion of the
received signals only for energy harvesting, then these signals

4Note that in our paper, the well-known Gaussian codebook approach is
used. Thus, the task of distinguishing the information and energy symbols,
i.e, determining the sets � and � C , is carried out only at the receiver, not
at the transmitter.
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Fig. 1. The random coding exponent E(R) and the sphere packing exponent
Esp (R) versus the rate, R. The channel is the Gaussian channel with SNR
of 10 dB and the input is the Gaussian distribution.

are referred to as the energy signals. Second, the remaining
received signals are referred to as the information signals,
which are used by the receiver for information decoding, or for
simultaneous information decoding and energy harvesting at
the same time but separately. In each frame, (1 � �) N signals
are assumed to be used as the information signals, and the
set of the information signals is denoted by � , where 0 �
� � 1 is chosen such that (1 � �) N is an integer, i.e., � 	�
0, 1

N , 2
N , • • • , 1

�
. The remaining � N signals are used as the

energy signals, and the set of energy signals is denoted by
� C . Note that the e f f ective length of a codeword actually
used for information decoding is (1 � �) N rather than N ,
because the remaining � N signals in � C are used only for
energy harvesting. In this paper, (1 � �) N will be referred
to as the effective codelength. In the following, the four well-
known SWIPT schemes are briefly presented: DPS, OPS, SPS,
and TS [16].

1) DPS: The most general scheme is the DPS, in which � k

portion of the power of the k-th received signal is used for
energy harvesting and (1� � k) portion is used for information
decoding, where 0 � � k � 1, k = 1, • • • , N . For the
information signals, we have 0 � � k < 1, k 	 � . On the other
hand, for the the energy signals, we have � k = 1, k 	 � C .
Also, the transmit symbol power, pk , 
k, varies over time. The
equivalent complex baseband discrete-time received signals
yk , k 	 � used for information decoding are given by [16]

yk = |h|
�

(1 � � k) pkxk +
�

1 � � k � A,k + � cov,k , k 	 �

(7)

where � A,k � CN (0, � 2
A) denotes the antenna noise and

� cov,k � CN (0, � 2
cov) denotes the noise introduced in the

process of frequency down conversion and demodulation. The
total noise

�
1 � � k � A,k + � cov,k is distributed by CN (0, (1 �

� k)� 2
A + � 2

cov). Also, the harvested energy in the k-th signal
period is given by � k 	 |h|2 pk if k 	 � , and 	 |h|2 pk if
k 	 � C [16], where 0 < 	 � 1 denotes the power conversion
efficiency. The average net energy that can be harvested per

symbol is given by

QDPS
N =

1

N

	

k	� C

	 |h|2 pk +
1

N

	

k	�



� k 	 |h|2 pk � flps

�
(8)

where flps � 0 denotes the power consumption at the informa-
tion decoding circuit.56 For the DPS, we impose the following
average power constraint on the transmitted symbols:

1

N

N	

k=1

pk � p. (9)

2) OPS: As a special case of the DPS, one can consider
the OPS, in which � k is fixed for all information signals,
i.e., � k = � for all k 	 � . Also, the transmit power of the
information signals is set as pk = pi for all k 	 � , and
that of the energy signals is set as pk = pe for all k 	 � C .
The harvested energy in the k-th symbol period is given by
�	 |h|2 pi if k 	 � , and 	 |h|2 pe if k 	 � C . The average net
energy that can be harvested per symbol is given by

QOPS
N = �	 |h|2 pe + (1 � �)



�	 |h|2 pi � flps

�
. (10)

For the OPS, the transmit power constraint is given by � pe +
(1 � �) pi � p.

3) SPS: As a special case of the OPS, one can consider
the SPS, in which all signals are the information signals,
i.e., � = 0 and pe = 0. The transmit power of all information
signals is set to pi . The harvested energy in the k-th symbol
period is given by �	 |h|2 pi , for k = 1, 2, • • • , N . The average
net energy that can be harvested per symbol is given by

QSPS
N = �	 |h|2 pi � flps . (11)

For the SPS, the transmit power constraint is simply given by
pi � p.

4) TS: As a special case of the OPS, one can consider
the TS, in which all information signals are used only for
information decoding (not simultaneous information decoding
and energy harvesting), i.e., � = 0. The transmit power of the
information signals is set as pk = pi for all k 	 � , and that
of the energy signals is set as pk = pe for all k 	 � C . The
harvested energy in the k-th symbol period is given by 0 if
k 	 � and 	 |h|2 pe if k 	 � C . The average net energy that
can be harvested per symbol is given by

QTS
N = �	 |h|2 pe � (1 � �) flps . (12)

For the TS, the transmit power constraint is given by � pe +
(1 � �) pi � p.

5It is assumed that no power is consumed at the energy harvesting circuit,
because the devices used (i.e., Schottky diode and the low-pass filter) are
passive [16]. The actual amount of circuit power consumption should depend
on how the circuits are implemented actually, which can be obtained from
the field tests. Our analysis is valid for any ( flps � 0) value of circuit power
consumption.

6Note that the circuit energy consumption for information decoding, given
by flEs =

�
k	� flps = (1� �) N flps , depends on the entire codelength N or the

effective codelength (1 � �) N itself.
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C. Maximum Rate With Infinite Codelength

In the ideal case of infinite codelength N � � (to be more
precise, the effective codelength is infinity, (1 � �) N � �),
the Shannon capacity can be achieved, and thus, the maximum
data rates of the DPS, OPS, SPS, and TS schemes in this ideal
case are, respectively, given by

RDPS
� =

1

N

N	

k=1

C (� k , pk) =
1

N

	

k	�

C ( pk , � k ) (13)

ROPS
� = (1 � �) C ( pi , � ) (14)

RSPS
� = C ( pi , � ) (15)

RTS
� = (1 � �) C ( pi , 0) . (16)

In the above equations, the capacity function C(•, •) is defined
as follows:

C(u, v) = log2




1 +
(1 � v)|h|2u

� 2
cov + (1 � v)� 2

A

�

. (17)

III. DECODING ERROR PROBABILITY FOR SWIPT

The existing R-E tradeoff results [15]–[17] implici tly
assume that the codelength is infinity. As discussed before,
however, assuming very long codelength (not to mention
the infinite codelength) is unrealistic for energy harvesting
receivers due to the complexity and power consumption lim-
itations. Furthermore, the effective codelength, i.e., the num-
ber of signals actually contributing to information decoding,
is (1 � �) N rather than N . In order to address these issues,
we study the SWIPT systems for the finite codelength. In this
subsection, we first derive the upper-bounds of the decoding
error probabilities for the four SWIPT schemes. Because the
DPS is the most general scheme and the other three schemes
are its special cases, we first focus on the DPS.

In the literature, to determine the upper bound of decoding
error probability, the simple form of the Gallager function
in (4) was often used. However, (4) cannot be directly used
for the DPS, because the power splitting ratio � k as well as
the transmit power pk is varying at the symbol level, although
the underlying physical channel gain |h| is fixed throughout
each codeword. For the DPS, from (7), the channel transition
probability fk (yk|xk , pk , � k) is given by

fk(yk |xk , pk , � k ) =
1


(� 2
cov + (1 � � k)� 2

A)

× exp




�
�
� yk �

�
(1 � � k) pk|h|xk

�
�2

� 2
cov + (1 � � k)� 2

A

�

(18)

for k 	 � . From this equation, one can easily see that the
equivlaent channel gain is given by

�
(1 � � k ) pk|h|, which

is varying at the symbol level. Therefore, in order to derive
the upper bound of the decoding error probability for the DPS,
instead of (4), one needs to take the approach for general time-
varying channels. Following the procedure of [23, p. 131],
[25, p. 773], it can be shown that given the data rate R,

the decoding error probability Pe,DPS
N (R) for the DPS is upper

bounded as follows:

Pe,DPS
N (R)

� Pup,DPS
N (R)

= M �
�

y�

� �

x�

q(x� )f(y� |x� , p� , � � )
1

1+� dx�

� 1+�

dy�

(19)

where q(x� ) =
�

k	� q(xk) and f(y� |x� , p� , � � ) =�
k	� fk (yk|xk , pk , � k). It is possible to derive the upper-

bounds of the decoding error probabilities in closed form as
follows.

Lemma 1: For the DPS, OPS, SPS, and TS, the upper
bounds of the decoding error probabilities are given by7

Pup,DPS
N (R)

= exp




�N ln 2


�
1

N

N	

k=1

� C
�

pk

1+�
, � k

� �

�� R

��

= exp




�N ln 2


�
1

N

	

k	�

� C
�

pk

1+�
, � k

� �

�� R

��

(20)

Pup,OPS
N (R)

= exp

�
�N ln 2

�
(1 � �)� C

�
pi

1 + �
, �

�
� � R

��
(21)

Pup,SPS
N (R)

= exp

�
�N ln 2

�
� C

�
pi

1 + �
, �

�
� � R

��
(22)

Pup,TS
N (R)

= exp

�
�N ln 2

�
(1 � �)� C

�
pi

1 + �
, 0

�
� � R

��
(23)

for 0 � � � 1.
Proof: See Appendix A. �

From Lemma 1, one can show that the upper bound of
the decoding error probability, denoted by Pup,�

N (R) for � 	
{DPS, OPS, SPS, TS}, is a monotonically increasing function
of the data rate R. In the next two sections, we use the results
of Lemma 1 to study the tradeoff between the rate and the
harvested energy, and the tradeoff between the decoding error
probability and the harvested energy.

IV. TRADEOFF BETWEEN RATE AND ENERGY

WITH FINITE CODELENGTH

In this section, we first determine the maximum data rate
for any finite codelength N and the rate penalty due to the
finite codelength. Then, for two scenarios of transmit power
adaptation, the R-E tradeoffs of the four SWIPT schemes are
analyzed in the finite codelength regime. From the derived
results along with the numerical results for the R-E tradeoffs,
we provide various useful insights into the performance of the
SWIPT schemes in the finite codelength.

7Note that the decoding error probabilities in (20)–(23) and the Shannon
capacities in (13)–(16) are fundamentally different mathematical expressions.
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A. Maximum Rate With Finite Codelength

For the case of infinite codelength, the performance measure
widely used in the literature is the Shannon capacity such
as in (13)–(16). However, for the case of finite codelength,
such concept of capacity does not exist. In fact, with finite
codelength, the maximum possible data rate is smaller than
the Shannon capacity. Furthermore, the decoding error prob-
ability is non-zero, which is in sharp contrast to the case of
infinite codelength where the error probability is essentially
zero. Therefore, determining the maximum data rate given
codelength N subject to a threshold of allowable decoding
error probability is an important and practical issue.

Let Pup
Th denote the threshold for the decoding error upper-

bound with 0 < Pup
Th < 1. The maximum date rate is

determined by constraining the upper-bound of the decoding
error probability Pup,�

N (R) not to be larger than the threshold
Pup

Th as follows8:

R�
N = max

0�R�R
�
�

R subject to Pup,�
N (R) � Pup

Th (24)

for � 	 {DPS, OPS, SPS, TS}. Note that the range of rate
R is [0, R�

�], because R cannot be larger than the Shannon
capacity for the case of infinite codelength. In the following
lemma, the solution to (24) is presented.

Lemma 2: The solution to (24) is given by

RDPS
N =

1

N

N	

k=1

C
�

pk

1 + �
, � k

�
� � N (Pup

Th )

=
1

N

	

k	�

C
�

pk

1 + �
, � k

�
� � N (Pup

Th ) (25)

ROPS
N = (1 � �) C

�
pi

1 + �
, �

�
� � N (Pup

Th ) (26)

RSPS
N = C

�
pi

1 + �
, �

�
� � N (Pup

Th ) (27)

RTS
N = (1 � �) C

�
pi

1 + �
, 0

�
� � N (Pup

Th ) (28)

where

� N (Pup
Th ) =

1

� N
log2

1

Pup
Th

. (29)

Proof: Because Pup,�
N (R) is an increasing

function of R for all � = {DPS, OPS,
SPS, TS}, in order to maximize R, the constraint must
be satisfied with the equality. Solving Pup,�

N (R) = Pup
Th for

R, we have (25)–(28). �
One can see from the result of Lemma 2 that for the case

of finite codelength, there exists a rate loss compared to the
Shannon capacity R�

� of infinite codelength, which depends
on various factors such as � , N , and Pup

Th . Note that because
� N (Pup

Th ) is also a function of � , it is possible to minimize
the rate performance loss by maximizing the the values of

8Note that the mathematical expressions of the Shannon capacity and the
rate (subject to an error probability threshold) are very different. Specifically,
the capacities in (13)–(16) imply essentially zero error probability and they
are independent of the codelength N , whereas the rates in (24) entail nonzero
error probabilities and depend on the codelength N .

R�
N over 0 � � � 1. In the following, we determine the lower

bound of the rate loss in closed-form to obtain some insights.
Corollary 1: The rate difference (or rate penalty), R�

��R�
N ,

due to the finiteness of the codelength is lower bounded as
follows:

R�
� � R�

N � � N (Pup
Th ) > 0 (30)

for � 	 {DPS, OPS, SPS, TS}.
Proof: See Appendix B. �

The result of Corollary 1 shows that the rate difference
is not smaller than � N (Pup

Th ), which is positive. From the
expression of � N (Pup

Th ) in (29), one can see that � N (Pup
Th ) is

inversely proportional to the codelength N .9 For example, if N
is doubled, � N (Pup

Th ) is halved in the terms of the lower bound,
suggesting that the rate loss decreases. As an asymptotic case
of N � �, one can easily see that limN�� � N (Pup

Th ) = 0.
Also, � N (Pup

Th ) is inversely and logarithmically proportional
to Pup

Th . Thus, when Pup
Th increases (i.e., the requirement for

the decoding error gets weaker), the lower bound � N (Pup
Th )

decreases, suggesting that the rate loss decreases. As an
asymptotic case, one can see that limPup

Th�1 � N (Pup
Th ) = 0.

B. R-E Tradeoff for the Case of No Power Adaptation
With Finite Codelength

Deriving the R-E tradeoff is one of the best ways to funda-
mentally characterize the performance of the SWIPT system.
Unlike the previous works [15]–[18] assuming the infinite
codelength, in this subsection, we study the R-E tradeoff for
the finite codelength. To this end, we consider the case of no
power adaptation first assuming no CSI at the transmitter. The
R-E tradeoff for the case of power adaptation is studied in the
next subsection. Although the DPS can allow variable transmit
power for each symbol, in the case of no power adaptation,
the transmit power of the symbols should be fixed over time
due to the lack of CSI knowledge at the transmitter; that is,
p1 = p2 = • • • = pN = p. Also, for the other schemes,
the OPS, SPS, and TS, we have pe = pi = p. Therefore,
the R-E regions given finite N can be defined as

C no-PA,�
N =

�
a�

�
(R, Q) : R � R�

N , Q � Q�
N

�
(31)

for � 	 {DPS, OPS, SPS, TS}. In (31), in order to simplify
the notation, we define a� = (� 1, � 2, • • • , � N ) if � =DPS,
a� = (�, �) if � =OPS, a� = � if � =SPS, and a� = �
if � =TS. In the following theorem, the optimality of the
SWIPT schemes in terms of the R-E tradeoff is studied for
the case of no power adaptation.

Theorem 1: For the case of no power adaptation with finite
codelength N < �, the OPS provides the same R-E region
as the DPS:

C no-PA,DPS
N = C no-PA,OPS

N , if flps � 0. (32)

Proof: See Appendix C. �
The result of Theorem 1 indicates that, for the scenario of

no power adaptation with any finite codelength, the OPS is

9A similar observation was made in [22] in the area of physical layer
security.
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Fig. 2. The R-E tradeoff curves for the case of no power adaptation when
N 	 {512, 1024, �}, P

up
Th 	 {10�6, 10�12}, p = 1W, flps = 0.25	 |h|2 p,

� 2
A = � 2

cov = � 2, and |h|2 p
� 2 = 20dB.

optimal in the R-E tradeoff sense whenever flps � 0, because
the DPS can provide the largest R-E region. Hence, without
any rate performance degradation, one can use the OPS when
there is no power adaptation, which is simpler than the DPS
in terms of the complexity of the power splitting operation.

In order to confirm our analysis, in Fig. 2, the R-E
tradeoff curves are shown for N 	 {512, 1024} and Pup

Th 	
{10�6, 10�12}.10 As the performance benchmark, the R-E
curves for the case of infinite codelength N = � are also
plotted. In this figure, the noise variances are set as � 2

A =
� 2

cov = � 2, where � 2 is chosen such that |h|2 p
� 2 = 20dB.

Also, the circuit power consumption is set to be 25% of the
harvested power, i.e., flps = 0.25	 |h|2 p. For the SPS (the TS),
the boundary of the R-E region can be obtained by sweeping
� from flps

	 |h|2 p
to one

�
� from � flps

	 |h|2 p+ flps
�N to one

�
. For the

OPS, the boundary of the R-E region can be achieved by first
optimizing (�, �) to maximize the rate given the harvested
energy requirement Q, and then, by varying Q, as studied in
[16] and [17].

From Fig. 2, one can see that the OPS provides the best
R-E regions as expected. Also, one can see that compared
to the case of infinite codelength N = �, the R-E tradeoff
performance of all schemes is degraded due to the finite
codelength N and the nonzero decoding error probability Pup

Th .
Specifically, the R-E regions of all schemes becomes smaller
when N and Pup

Th decrease. The rate performance degradation
is particularly large when the harvested energy Q is small. The
reason is that the information decoding (or the rate) heavily
depends on both N and Pup

Th , whereas the energy harvesting (to

10Throughout the paper, we use realistic parameters for numerical sim-
ulations. Specifically, the channel power gain is modeled as |h| =�

1 � exp


� at ar

(c/ fc)2d2

�
[9], where at is the aperture of the transmit antenna;

ar the aperture of the receive antenna; c the speed of light; and d the distance.
We particularly consider a practical scenario when the receiver is a small
sensor considering the applicability to wireless sensor networks. Thus, we set
at = 0.5m, ar = 0.01m, fc = 2.4GHz, and d = 13m [17]. Also, for all
numerical results, the transmit power threshold is set to p = 1W.

be precise, the average harvested energy) is independent of
both of them. From the observations above, therefore, we can
obtain the insight that the effect of finiteness of the code-
length is most significant when the target harvested energy is
low or the target rate is high. This clearly reveals the practical
limitation of the applicability of the proposed solutions to
certain wireless sensor networks consuming extremely low
power such as wireless body sensors [27] or requiring very
high rate such as disaster monitoring [28]. In such applications,
one should increase the codelength N for better performance.

In Fig. 2, it is also interesting to see that neither the SPS
nor the TS always performs better. Specifically, the TS (the
SPS) is better when the rate (the harvested energy) is small.
This is because the TS is able to save the circuit energy
consumption during the � portion of time, whereas the SPS
always consumes the circuit power for information decoding,
and thus, the nonzero circuit power consumption yields a
nontrivial tradeoff between the SPS and TS.

Remark 2: The result of Theorem 1 can be considered as an
extension or generalization of the previous results of N = �,
[16, Proposition 4.1] and [16, Proposition 6.1], to the case of
finite codelength N < �. �

C. R-E Tradeoff for the Case of Power Adaptation With
Finite Codelength

In this subsection, we study the R-E tradeoff for the
case of power adaptation with finite codelength assuming the
CSI knowledge at the transmitter.11 In this case, the DPS can
adapt the transmit power for better performance, and so do the
other schemes, the OPS, SPS, and TS. Thus, the R-E regions
are defined as

C PA,�
N =

�
a� ,b�

�
(R, Q) : R � R�

N , Q � Q�
N

�
(33)

for � 	 {DPS, OPS, SPS, TS}. In (33), we denote b� =
( p1, p2, • • • , pN ) if � =DPS, b� = ( pi , pe) if � =OPS,
TS, and b� = pi if � =SPS. In the following theorem, we
study the optimality of the SWIPT schemes in terms of the
R-E tradeoff for the case of power adaptation.

Theorem 2: For the case of power adaptation with finite
codelength N < �, the OPS provides the same R-E region
as the DPS:

C PA,DPS
N = C PA,OPS

N , if flps � 0. (34)

Proof: See Appendix D. �
Similar to the result of Theorem 1, that of Theorem 2 indi-

cates that for the scenario of power adaptation with any
finite codelength, the OPS is still optimal in terms of the
R-E tradeoff. However, in contrast to the case of no power
adaptation, the OPS becomes much simpler than the DPS for
the case of power adaptation because the complexities of both

11In order to allow the transmitter to adapt its transmit power, the channel
itself, h, or the channel power gain, |h|2, needs to be fed back from the
receiver to the transmitter at the cost of the additional energy consumption
at the receiver for feedback transmission. Thus, the power adaptation scheme
is not always better than no power adaptation scheme in practice. Recently,
the received power-based channel estimation [30] has been realized which
requires very little additional energy consumption at the receiver.
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the power adaptation and power splitting operation can be
substantially reduced.

In order to validate our analysis, we numerically evaluate the
R-E regions of different schemes. For the SPS, the R-E region
of no power adaptation case is exactly the same as that of the
power adaptation case, because the boundary can be achieved
by simply using � 	

�
flps

	 |h|2 pi
, 1

�
with pi = p. For the SPS,

the transmit power adaptation is thus not advantageous. On the
other hand, for the OPS and TS, it becomes nontrivial to
determine the boundaries of their R-E regions except at some
edge points: (R, Q) = (Rmax, 0) and (R, Q) = (0, Qmax)
when flps = 0, and (R, Q) = (0, Qmax) when flps > 0. This
is because the power allocation between pe and pi needs
to be considered and the finiteness of codelength should be
considered as well. To obtain the R-E boundaries of the OPS
and TS, one need to solve the following optimization problems
with given Q and p:

(P1): max
� 	 (A
0),
� 	[0,1),
pe, pi �0

(1 � �) C
�

pi

1 + �
, �

�
� � N (Pup

Th ) (35)

subject to �	 |h|2 pe+(1 � �)(�	 |h|2 pi � flps) � Q

(36)

� pe + (1 � �) pi � p (37)

for the OPS and

(P2): max
� 	A,

pe, pi�0

(1 � �) C
�

pi

1 + �
, 0

�
� � N (Pup

Th ) (38)

subject to �	 |h|2 pe � (1 � �) flps � Q (39)

� pe + (1 � �) pi � p (40)

for the TS, where A 	
� 1

N , 2
N , • • • , N�1

N

�
. To the best of our

knowledge, the above problems have not been studied in the
literature at all. In some studies such as [15, Proposition 4.1]
and [18, Proposition 3.1], the problem similar to (P2) for the
TS was solved only for the simplistic case of infinite codelenth
N = �, zero circuit power consumption flps = 0, and zero
antenna noise � 2

A = 0. Thus, the solutions therein cannot
be used to solve either (P1) or (P2). Particularly, in contrast
to the problems in [15] and [18], where the time switching
ratio � was a continuous variable due to the assumption of
infinite codelength, the variable � is a discrete value in our
problems (P1) and (P2), because the codelength N is finite.
This is clearly a critical challenge for optimization.

In what follows, we derive the solutions to the prob-
lems (P1) and (P2), from which very useful insights and quite
distinct consequences from the existing results are provided
along with the numerical results.

Lemma 3: The solution to (P1) is given by

� � =

�
��, if flps > 0

0, if flps = 0
(41)

� �(� �) =
(1 � � �) (Q + (1 � � �) flps)

	 |h|2 p � � � (Q + (1 � � �) flps)
(42)

p�
e (� �) =

�
�����

�����

1

� �	 |h|2
�
Q+ flps�� �(� �)	 |h|2 p�

i (� �)
�

+� �(� �) p�
i (� �)�

flps

	 |h|2
, if � � > 0

0, if � � = 0

(43)

p�
i (� �) =

�
�����

�����

1

(1�� �)(1�� �(� �))

�
p�

Q

	 |h|2

�

�
flps

(1�� �(� �))	 |h|2
, if � � > 0

p, if � � = 0.

(44)

In (41), �� is given by �� = arg max
� 	 �A

(1 � �) C



pi (�)
1+� , �(�)

�
,

which can be obtained by simple one dimensional search-
ing, where �A =

�
��, �� + 1

N , • • • , N�1
N

�
and �� =

max
�
�1 � 	 |h|2 p�Q

flps
�N , 0

 
. Also, � (�) and pi (�) are sim-

ilarly defined as in (42) and (44), respectively.
Proof: See Appendix E. �

As a special case of Lemma 3 with � = 0, we have the
following result (and thus, the proof is omitted).

Lemma 4: The solution to (P2) is given by

� � =

�
�� if flps > 0
1
N , if flps = 0

(45)

p�
e (� �) =

1

� �	 |h|2
(Q + flps) �

flps

	 |h|2
(46)

p�
i (� �) =

1

1 � � �

�
p �

Q

	 |h|2

�
�

flps

	 |h|2
. (47)

In (45), �� is given by �� = arg max
� 	 �A

(1 � �) C



pi (�)
1+� , 0

�
, which

can be obtained by simple one dimensional searching, where
�A =

�
��, �� + 1

N , • • • , N�1
N

�
, �� = max

�
�1 � 	 |h|2 p�Q

flps
�N , 1

N

 
,

and pi (�) is similarly defined as in (47). �
From the results of Lemmas 3 and 4, the following obser-

vations can be made. First, for the OPS, there is no advantage
of transmit power adaptation when flps = 0 because it actually
works as the SPS in this case. This means that when the circuit
power consumption is zero, the TS is always suboptimal,
whereas the SPS is optimal for the scenario of power adap-
tation, which, however, actually does not adapt any transmit
power. This result is clearly surprising. Also, this result is in
sharp contrast to the existing results of [15] and [18], as we
will discuss later.

Only when flps > 0, the OPS takes the advantage of power
adaptation. In contrast to the OPS, for the TS, the power
adaptation can always be used to improve the R-E tradeoff
performance. From the results of Lemmas 3 and 4, one can see
that for the OPS and TS, the transmit power of the information
and energy symbols depends on � �, i.e., the optimal fraction
of time devoted to the energy harvesting. In general (except
for � � = 0 in the OPS), when � � decreases, more power
needs to be allocated to the energy symbols to satisfy the
harvested energy target. The information symbols then take
the remaining power, and thus, their power is reduced when
� � decreases.

In what follows, we compare our new results on power
adaptation to the existing results of the infinite codelength in
detail.
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Remark 3: Our solution derived in Lemma 4 for the TS quite
differs from the existing solutions of [15, Proposition 4.1]
and [18, Proposition 3.1] in several aspects. For ease of
exposition, we consider the problem (P2) for the special case
of flps = 0, as studied in [15] and [18]. In this case, it was
shown in [15] and [18] that for the case of infinite codelength
N = �, the optimal solution to (P2) is given by � � � 0,
p�

e � �, and p�
i = p � Q

	 |h|2 . On the other hand, from
the result of in Lemma 4, the optimal solution to (P2) in
the finite codelength regime N < � should be � � = 1

N ,

p�
e = N

	 |h|2 Q, p�
i = N

N�1



p � Q

	 |h|2

�
. Even from these two

different solutions for the special case of flps = 0, we can draw
several important and distinctive consequences for the SWIPT
system when using finite and infinite codelengths, as follows.

� In [15] and [18], it was argued that for the case of
infinite codelength, the optimal � should be chosen as
� � = O(log N)

N to be asymptotically zero as N � �.
However, as can be seen from our result, this is not true
for the case of finite codelength. Instead, our new result
strongly suggests that in the finite codelength regime
N < �, only one symbol of the codeword should be
used to carry the energy with � � = 1

N , not � � = O(log N)
N .

� The existing solutions of [15] and [18] are clearly ideal,
and practically unrealistic and nonimplementable for any
codelength, because one must transmit the energy sym-
bols with infinite power p�

e � �. In sharp contrast
to this, the proposed solution is practically realizable
and implementable in the finite codelength regime. The
reason is that one can transmit the energy symbol with
finite transmit power p�

e = N
	 |h|2 Q < � as long as the

codelength N is finite. �
Remark 4: The existing power adaptation results of [15]

and [18] for the infinite codelength are included as special
cases of our general result of Lemma 4 for the TS when N �
� and flps = 0. �

In order to confirm our analysis and to obtain various useful
insights into the finite codelength SWIPT systems with power
adaptation, the R-E tradeoff curves are shown in Figs. 3–5
for different system setups. The R-E regions of the OPS and
TS are obtained based on the results of Lemmas 3 and 4,
respectively. For N 	 {16, 32, 128, �} and Pup

Th = 10�6, the

results of Fig. 3 are shown when flps = 0, � 2
A = 0, and |h|2 p

� 2 =
20dB, and those of Fig. 4 are shown when flps = 0.1	 |h|2 p,
� 2

A = 0, and |h|2 p
� 2 = 30dB. On the other hand, the results

of Fig. 5 are shown for N 	 {256, �}, Pup
Th = 10�12 when

flps 	 {0, 0.25	 |h|2 p}, � 2
A = � 2, and |h|2 p

� 2 	 {20, 30}dB.
In the following, addressing the issues of finite code-

length, circuit power consumption, and antenna noise, we
make interesting and novel observations, and provide com-
prehensive insights, which have never been obtained in
any previous publications including [15]–[18] for infinite
codelength.

1) Effect of Finite Codelength N Only: Fig. 3 considers the
simplistic case of flps = 0 and � 2

A = 0 to see the effect of the
finite codelength N on the SWIPT schemes. In [15] and [18],
it was verified that for the case of infinite codelength N = �,

Fig. 3. The R-E tradeoff curves for the case of power adaptation when
N 	 {16, 32, 128, �}, P

up
Th = 10�6, p = 1W, flps = 0, � 2

A = 0, � 2
cov = � 2,

and |h|2 p
� 2 = 20dB.

the TS has the same R-E tradeoff performance as the SPS
(and thus, the OPS), i.e., C PA,OPS

� = C PA,SPS
� = C PA,TS

� (as
can be seen from the curves of Fig. 3 annotated by N = �).
In contrast to this existing result, the curves of Fig. 3 for the
case of N < � show that in the finite codelength regime, the
TS is generally suboptimal due to the finiteness of codelength.
The specific reason is that when the codelength is finite
N < �, the proposed power adaptation solution of the TS
is not ideal: � � is not asymptotically zero and p�

e (� �) is not
infinite as well, as explained in Remark 3. Thus, except for two
extreme R-E points, the R-E region of the TS is strictly smaller
than the SPS (or the OPS) in spite of the power adaptation.
The performance gap is large when N is small, whereas this
gap shrinks as N increases, because the proposed solution
approaches the ideal solution of [15] and [18].

2) Effects of Finite codelength N and Circuit Power Con-
sumption flps: Fig. 4 considers the case of flps > 0 and � 2

A = 0
to see the effect of the finite codelength N and the circuit
power consumption flps . First, from Fig. 4, it is very interesting
to see that when the codelength is infinity N = �, the TS
outperforms the SPS. In fact, the TS has exactly the same
R-E region as the OPS, i.e., C PA,OPS

� = C PA,TS
� . Thus, for

the scenario of power adaptation, the TS is optimal when
N = � and flps > 0 (this will be proved in Corollary 2 at
the end of this subsection). This result is in sharp contrast to
the existing results of [15] and [18] for the case of N = �
and flps = 0, where the SPS and TS have the same R-E
region and they are all optimal. Second, when the codelength is
finite N < �, the tradeoff result, however, becomes different
compared to the infinite codelength case. Specifically, nether
the SPS nor the TS always performs better and only the
OPS is optimal, due to the finite codelength effect addressed
above and the circuit power issue discussed in the previous
subsection.

3) Effects of Finite codelength N, Circuit Power Consump-
tion flps, and Antenna Noise � 2

A: Fig. 5 addresses all the issues
of the finite codelength N , the circuit power consumption flps ,
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Fig. 4. The R-E tradeoff curves for the case of power adaptation when
N 	 { 16, 32, 128, �} , Pup

Th = 10Š6, p = 1W, p̄s = 0.1	 |h|2 p, � 2
A = 0,

� 2
cov = � 2, and |h|2 p

� 2 = 30dB.

Fig. 5. The R-E tradeoff curves for the case of power adaptation when
N 	 { 256, �} , Pup

Th = 10Š12, p = 1W, p̄s 	 { 0, 0.25	 |h|2 p},

� 2
A = � 2

cov = � 2, and |h|2 p
� 2 	 { 20, 30}dB.

and the antenna noise� 2
A. Note that the antenna noise issue

has never been considered in [15] and [18]. As can be seen
from Fig. 5, when the antenna noise� 2

A > 0 is explicitly taken
into account, nether the SPS nor the TS always performs better
even whenN = � and p̄s = 0. This result is in sharp contrast
to the results of [15] and [18], where the SPS and TS have
the same performance whenN = � and p̄s = 0. The reason
is that the antenna noise has different effect on the SPS and
TS. Speci�cally, the rate of the SPS is less degraded by the
antenna noise than the TS due to the power splitting of the
antenna noise, i.e.,(1 Š �)� 2

A rather than� 2
A. Also, different

from the results of [15] and [18], only the OPS is observed to
have the optimal performance even whenN = � and p̄s = 0.
For case of �nite codelengthN < � , the similar observations
to above can be made.

Corollary 2: For the case of power adaptation with in�nite
codelength N = � , nonzero circuit power consumption

p̄s > 0, and zero antenna noise� 2
A = 0, the TS provides

the same R-E region as the OPS:

CPA,OPS
� = CPA,TS

� . (48)

Proof: See Appendix F. �

V. TRADEOFFBETWEEN Pup AND ENERGY

WITH FINITE CODELENGTH

In the last section, the R-E tradeoff was studied, which gave
us useful insight into the performance of the SWIPT systems.
In fact, for the case of in�nite codelength, understanding the
R-E tradeoff was just enough to completely characterize the
SWIPT systems. In the �nite codelength, however, the R-E
tradeoff alone cannot fully explain the performance of the
SWIPT systems, because the decoding error probability is
nonzero in the �nite codelength. Therefore, to completely
characterize the performance of the SWIPT systems in the
regime of �nite codelength, we propose toaddi tionally use
a new tradeoff between the decoding error probability and the
harvested energy. More speci�cally, in this paper, we investi-
gate the tradeoff between the upper bound of decoding error
probability and the energy, because there exists no analytical
way to determine the actual decoding error probability in
the �nite codelength, as discussed in Section II. Note that
constraining the upper bound ofthe error probability below
a certain threshold always guarantees that the actual error
probability remains below the threshold.

A. Minimum Upper Bounds of Decoding Error Probability

To obtain the largest achievablePup-E region, we need
to determine the minimum upper bound of decoding error
probability. Speci�cally, given the minimum target data rate
RTh, the minimum possible upper boundPup,�

N of decoding
error probability is obtained as follows:

Pup,�
N = min

R
Pup,�

N (R) subject toR � RTh. (49)

From (20)–(23) and using the fact thatPup,�
N (aR) is an

increasing function ofR, it is not dif�cult to obtain Pup,�
N

as follows:

Pup,�
N = Pup,�

N (RTh) (50)

for � 	 { DPS, OPS, SPS, TS}. Similar to the maximum
ratesR�

N, the minimum upper bounds of the decoding error
probabilities, Pup,�

N , can be tightened by minimizing over
0 � � � 1.

B. Pup-E Tradeoff for the Case of No Power Adaptation
With Finite Codelength

Using Pup,�
N , in this subsection, we investigate thePup-E

tradeoff for the case of no poweradaptation. Mathematically,
the achievablePup-E regions are determined as follows:

Pno-PA,�
N =

!

a�

�
(Pup, Q) : Pup � Pup,�

N , Q � Q�
N

 
(51)
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for � 	 { DPS, OPS, SPS, TS}. In the following theorem,
we study the optimality of the SWIPT schemes in terms of
the Pup-E tradeoff for the case of no power adaptation.

Theorem 3:For the case of no power adaptation with �nite
codelengthN < � , the OPS provides the samePup-E region
as the DPS:

Pno-PA,DPS
N = Pno-PA,OPS

N , if p̄s � 0. (52)

Proof: The proof is similar to that of Theorem 1 by
additionally taking into account the fact thatPup,�

N is a
monotonically decreasing function ofC(·, ·). �

The result of Theorem 3 indicates that, for the scenario of
no power adaptation with any �nite codelength, the OPS is
optimal in the Pup-E tradeoff sense whenever̄ps � 0. This
result along with the result of Theorem 1 gives us very useful
insight into the SWIPT: without any performance degradation
in the �nite codelength regime, one can use the OPS when
the power is not adapted, which is less complex than the DPS,
because it is optimal inboth the R-E senseand in the Pup-E
sense.

Fig. 6 shows the achievablePup-E regions forN = 32 and
RTh 	 { 1.5, 0.5} when p̄s 	 { 0, 0.4	 |h|2p} and |h|2 p

� 2 = 10dB.
From Fig. 6, the OPS is observed to have the largestPup-E
region, as proved in Theorem 3. Whenp̄s = 0, the curves of
the OPS and SPS overlap and the TS has the smaller region,
because the OPS reduces to the SPS with� = 0. On the other
hand, for the case of̄ps > 0, the TS (the SPS) is better than
the SPS (the TS) whenPup is large (small) due to the circuit
power issue discussed in Section IV-B.

From Fig. 6, it can be seen that when the target rate
RTh is high, the Pup-E tradeoff region is relatively small
and the decoding error probability is strictly limited. This
degraded performance again reveals the practical limitation
in using the proposed solutions for higher data rate sensor
network applications. On the other hand, whenRTh is low,
the Pup-E region is signi�cantly enlarged. Moreover, in this
low rate regime, the energy harvesting performance is not
much degraded by signi�cantly improving the decoding error
performance. These clearly showthe potential bene�ts of using
the proposed solutions for many practical wireless sensor
networks such as Internet of Things (IoT), which usually
operate with low data rate [29].

C. Pup-E Tradeoff for the Case of Power Adaptation With
Finite Codelength

In this subsection, we investigate thePup-E tradeoff for the
case of power adaptation. The achievablePup-E regions are
de�ned as follows:

PPA,�
N =

!

a� ,b�

�
(Pup, Q) : Pup � Pup,�

N , Q � Q�
N

 
(53)

for � 	 { DPS, OPS, SPS, TS}. The following theorem estab-
lishes the optimality of the OPS in the sense of thePup-E
tradeoff for the case of power adaptation.

Theorem 4:For the case of power adaptation with �nite
codelengthN < � , the OPS provides the samePup-E region

Fig. 6. ThePup-E tradeoff curves for the case of no power adaptation when
N = 32, RTh 	 { 1.5, 0.5}, p = 1W, p̄s 	 { 0, 0.4	 |h|2 p}, � 2

A = � 2
cov = � 2,

and |h|2 p
� 2 = 10dB.

as the DPS:

PPA,DPS
N = PPA,OPS

N , if p̄s � 0. (54)

Proof: The proof is similar to that of Theorem 2 by
additionally taking into account the fact thatPup,�

N is a
monotonically decreasing function ofC(·, ·). �

Remark 5: From the results of Theorems 1–4, one can
make an important conclusion: for any codelength, the OPS is
universally optimal in the senses of the R-E tradeoff and the
decoding error probability-energy tradeoff with and without
power adaptation. �

The achievablePup-E region of the SPS for the case of
power adaptation is exactly the same as the case of no power
adaptation. On the other hand, to obtain the largestPup-E
regions of the OPS and TS, respectively, we need to solve the
following optimization problems:

(P3): min
� 	 (A
 0),
� 	[ 0,1),
pe, pi � 0

exp
�

Š N ln 2
�

(1 Š �)� C
�

pi

1 + �
, �

�

Š � RTh

��
(55)

subject to (36) and (37) (56)

for the OPS and

(P4): min
� 	 A,

pe, pi � 0

exp
�

Š N ln 2
�

(1 Š �)� C
�

pi

1 + �
, 0

�

Š � RTh

��
(57)

subject to (39) and (40) (58)

for the TS. In fact, the similar approaches used to solve
the problems (P1) and (P2) can be followed to solve the
problems (P3) and (P4), respectively, due to the monotonic
decreasing property of the objective functions inC(·, ·). Thus,
in the following lemma, we give the solutions to the above
problems without proof.
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Fig. 7. The Pup-E tradeoff curves for the case of power adaptation when
N = 32, RTh 	 {1.5, 0.5}, p = 1W, flps 	 {0, 0.4	 |h|2 p}, � 2

A = � 2
cov = � 2,

and |h|2 p
� 2 = 10dB.

Fig. 8. The Reff -E tradeoff curves for the case of no power adaptation when
N = 32, RTh 	 {1.5, 0.5}, p = 1W, flps 	 {0, 0.4	 |h|2 p}, � 2

A = � 2
cov = � 2,

and |h|2 p
� 2 = 10dB.

Lemma 5: The solutions to the problems (P3) and (P4) are
given by (41)–(44) and (45)–(47), respectively, as derived in
Lemmas 3 and 4. �

Fig. 7 shows the achievable Pup-E regions for the power
adaptation case. The system setup is the same as in Fig. 6.
Comparing the curves of Fig. 7 to those of Fig. 6, it can be seen
that the Pup-E region of the SPS is unchanged, whereas those
of the OPS and TS are enlarged due to the power adaptation
between the information and energy symbols. For the OPS,
there is no advantage of adapting the power when flps = 0
because it actually works as the SPS, and the performance
gain of the power adaptation is even smaller when flps > 0.
For the TS, the performance improvement due to the power
adaptation is large when flps = 0; but, it is small when flps > 0.

D. Effective Throughput-Energy Tradeoff With
Finite Codelength

Although the proposed Pup-E tradeoff can be useful for
delay-limited or fixed-rate SWIPT applications, with the

Fig. 9. The Reff -E tradeoff curves for the case of power adaptation when
N = 32, RTh 	 {1.5, 0.5}, p = 1W, flps 	 {0, 0.4	 |h|2 p}, � 2

A = � 2
cov = � 2,

and |h|2 p
� 2 = 10dB.

upper bounds of the decoding error probabilities Pup,�
N (R)

in (20)–(23), one can also consider an interesting performance
tradeoff, namely, the tradeoff between the effective throughput
and the energy. Because the codeword carries the K bits during
the block of length N , the effective throughput of the codeword
can be measured by

Reff ,�
N =

�
1 � Pup,�

N

�
K

N

��
K

N
(59)

for � 	 {DPS, OPS, SPS, TS}. Similar to (31) and (33),
one can define the effective throughput-energy regions as fol-
lows: flC no-PA,�

N =
�

a�

�
(Reff , Q) : Reff � Reff,�

N , Q � Q�
N

 

for the case of no power adaptation and flC PA,�
N =

�
a� ,b�

�
(Reff , Q) : Reff � Reff,�

N , Q � Q�
N

 
for the case of

power adaptation.
Figs. 8 and 9 show the achievable effective throughput

and energy regions for no power adaptation case and power
adaptation case, respectively. In Figs. 8 and 9, we set K

N =
0.75 when flps > 0 and K

N = 1.5 when flps = 0. The other
parameters of Figs. 8 and 9 are the same as in Figs. 6 and
7, respectively. From the figures, it can be seen that the OPS
still has the largest regions. Also, the similar observations as
in Figs. 6 and 7 can be made for Figs. 8 and 9, respectively.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we studied the R-E tradeoff and the new
decoding error probability-energy tradeoff of the SWIPT
systems in the finite codelength considering two different
cases: no power adaptation and power adaptation. The key
messages of our work can be summarized as follows. First,
for any codelength including the ideal infinite codelength and
the practical finite codelength, the OPS should be used to
obtain the best performance of the SWIPT in various tradeoff
senses. Second, in addition to the R-E tradeoff, the proposed
decoding error probability-energy tradeoff should be used
to fully characterize the performance of the SWIPT system
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in the finite codelength regime. Third, for the case of the
SWIPT with the finite codelength, the obtained insights into
the system performance are quite distinct from those reported
in the existing literature, due to the effect of finiteness of
the codelength and the nonzero decoding error probability.
Finally, the proposed schemes considering the realistic finite
codelength indeed gave practical and implementable solutions
to the real-life SWIPT systems, whereas the schemes designed
for the infinite codelenth might not be directly used for the
real-life SWIPT systems.

To conclude, we provide helpful suggestions for future
works. In this paper, we assumed the Gaussian distributed
input. It will be interesting to extend our results to more
practical case of discrete inputs. Furthermore, in this paper,
we considered the linear energy harvesting model for analysis.
More practical case of nonlinear energy harvesting can be
studied as an interesting future work.

APPENDIX A
PROOF OF LEMMA 1

It follows from (19) that

Pup,DPS
N (R)

= exp



ln 2K �
�

• exp



	

k	�

ln

" �

yk

×
� �

xk

q(xk) fk (yk|xk , pk , � k)1/(� +1)dxk

� 1+�

dyk

#�

= exp




�N

�

1

N

	

k	�

EDPS
k

�

� � R ln 2

��

(A.1)

for 0 � � � 1, where M = 2K , R = K
N , and the input dis-

tribution q(xk) is given by (because we consider the Gaussian
codebook) q(xk) = 1


 exp
�
�|xk|2

�
, k = 1, 2, • • • , N . The

general form of the Gallager function is solved in closed-
form as in (A.2), as shown at the top of the next page. In
this equation, the total noise variance 
 k and the equivalent
channel gain Hk are, respectively, given by 
 k = � 2

cov + (1 �
� k)� 2

A and Hk =
�

(1 � � k) pk|h|. Using C(•, •) in (17) and the
identity ln z = ln 2 • log2 z, the equation (A.2) can be rewritten
as in (20). As a special case of the DPS, the error probability
upper bound of the OPS in (21) is obtained from (20) by
substituting � k = � and pk = pi for k = 1, 2, • • • , (1 � �) N .
As a special case of the OPS, the error probability upper bound
of the SPS in (22) is obtained from (21) by setting � = 0 and
pe = 0. Finally, setting � = 0, we obtain from (21) the error
probability upper bound of the TS in (23). �

APPENDIX B
PROOF OF COROLLARY 1

We first prove this corollary for the DPS as follows:

RDPS
� � RDPS

N

=
1

N

N	

k=1

C ( pk , � k ) �
1

N

N	

k=1

C
�

pk

1 + �
, � k

�
+ � N (�, Pup

Th )

(a)
�

1

N

N	

k=1

C ( pk , � k) �
1

N

N	

k=1

C ( pk , � k) + � N (�, Pup
Th )

= � N (�, Pup
Th ) > 0

where (a) holds because 0 � � � 1 and C(x , •) is an
increasing function of x . The proofs for OPS, SPS, and TS
are similar. �

APPENDIX C
PROOF OF THEOREM 1

Because the OPS is a special case of the DPS, it is
obvious that C no-PA,DPS

N � C no-PA,OPS
N . In the following, thus,

we prove C no-PA,DPS
N � C no-PA,OPS

N . Using the concavity of
C(•, �) in � 	 [0, 1] and using the Jensen’s inequality,
we have 1

(1��) N

�
k	� C(•, � k ) � C



•, 1

(1��) N

�
k	� � k

�
.

Thus, for 
� and 
� � = [� 1, • • • , � (1��) N ], there exists
� = 1

(1��) N

�
k	� � k such that QDPS

N = QOPS
N , or �	 |h|2 p +

1
N

�
k	� (� k 	 |h|2 p� flps) = �	 |h|2 p+(1��)(�	 |h|2 p� flps).

Then, we have 1
N

�
k	� C(•, � k) � (1 � �) C (•, � ) . We now

subtract � N (�, Pup
Th ) from both sides: 1

N

�
k	� C(•, � k) �

� N (�, Pup
Th ) � (1 � �) C (•, � ) � � N (�, Pup

Th ), leading to
RDPS

N � ROPS
N . Hence, we have C DPS

N � C OPS
N . It thus follows

that C no-PA,DPS
N = C no-PA,OPS

N whenever flps � 0. �

APPENDIX D
PROOF OF THEOREM 2

It immediately follows that C PA,DPS
N � C PA,OPS

N because the
OPS is a special case of the DPS. Thus, in the following,
we show that C PA,DPS

N � C PA,OPS
N . First, for 
� and p� C =

[p(1��) N+1, • • • , pN ], there exists pe = 1
� N

�
k	� C pk such

that 1
N

�
k	� C 	 |h|2 pk = �	 |h|2 pe. Let zk = (1�� k ) pk

� 2
cov+(1�� k )� 2

A
,


k. Then, defining J (z) = log2
�
1 + |h|2z

�
and using the con-

cavity of J (z) in z � 0, it follows that 1
(1��) N

�
k	� J (zk) �

J



1
(1��) N

�
k	� zk

�
. The above inequality holds when

zk’s in � have the same value. Thus, for 
� , 
� � =
[� 1, • • • , � (1��) N ], and 
p� = [p1, • • • , p(1��) N ], there exist
some � = � k and pi = pk for k 	 � such that z1 =
• • • = z(1��) N and 1

N

�
k	� � k 	 |h|2 pk � (1 � �)�	 |h|2 pi .12

Then we have QDPS
N � QOPS

N and 1
N

�
k	� C( pk , � k ) �

(1 � �) C ( pi , � ) , implying that RDPS
N � ROPS

N . From the
transmit power constraint 1

N

�
k	� C pk + 1

N

�
k	� pk � p,

the values of pe and pi should satisfy � pe + (1 � �) pi � p.
Hence, it follows that C PA,DPS

N � C PA,OPS
N . �

APPENDIX E
PROOF OF LEMMA 3

It can be shown that for the problem (P1), both the energy
harvesting and transmit power constraints, given by (36)
and (37), respectively, should be fulfilled with equality. Other-
wise, the objective function can increase by the other solution
that satisfies the constraints with equality. First, we consider

12Note that the points (� k , pk ), k 	 � , which guarantee z1 = • • • =
z(1��) N and 1

N
�

k	� � k 	 |h|2 pk � (1 � �)�	 |h|2 pi , may not be unique in
general. However, the solution obtained by � = � k and pi = pk , k 	 � is a
pareto optimal point.
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EDPS
k = � ln

� �

yk

� �

xk

q(xk) fk(yk |xk , pk , � k )1/(� +1)dxk

� 1+�

dyk

#

= � ln

�


1 +
H 2

k


 k(1 + �)

� �� #

= exp




�N

�

1

N

N	

k=1

� ln




1 +
(1 � � k)|h|2 pk

(� 2
cov + (1 � � k)� 2

A)(1 + �)

� �� �

� � R ln 2

��

(A.2)

the case when flps > 0. If � = 0, we can set pe = 0,
pi = p, and � = Q+ flps

	 |h|2 P
without loss of generality. If

� > 0, from �	 |h|2 pe + (1 � �)(�	 |h|2 pi � flps) = Q,
we have pe = Q+(1��)( flps��	 |h|2 pi )

�	 |h|2 . Substituting this pe into
� pe + (1 � �) pi = p and solving for pi , we obtain pi =

1
(1��)



1

1��



p � Q

	 |h|2

�
� flps

	 |h|2

�
. Substituting the obtained pi

into the expression of pe, one can show that the value of
� must be limited by 0 � � � (1��)( Q+(1��) flps)

	 |h|2 p��( Q+(1��) flps)
to

ensure pe � 0. Also, the value of � should be limited
by �� � � < 1 to ensure pi � 0 and � � 1, where
�� = max

�
�1 � 	 |h|2 p�Q

flps
�N , 0

 
. It can be shown that when

the expression of pi is substituted, the function C



pi
1+� , �

�
is

monotonically increasing in � . Thus, the optimal � is given by
� = (1��)( Q+(1��) flps)

	 |h|2 p��( Q+(1��) flps)
. After putting the expressions of the

obtained pe, pi , and � into the objective function, the optimal
value of � can be found by maximizing (1 � �) C



pi

1+� , �
�

over �A =
�
��, �� + 1

N , • • • , N�1
N

�
. Next, we consider the

case when flps = 0. In this case, it can be proved that
(1 � �) C



pi

1+� , �
�

is monotonically decreasing in � when
pi and � are substituted. Thus, the optimal � is zero, and
thus, we have pe = 0 without loss generality. Denoting the
optimal � by � � and representing the expressions of pe, pi ,
and � in terms of � �, we have the results of (41)–(43). �

APPENDIX F
PROOF OF COROLLARY 2

We prove that when N = �, � 2
A = 0, and flps > 0,

the R-E region of the OPS can reduce to that of the TS.
Using the results of (41)–(43), it can be shown that the R-E
region of the OPS is given by C PA,OPS

� =
�

0�� �1

�
(R, Q) :

R � (1� �) log2



1+ |h|2

� 2
cov



1

1��



p � Q

	 |h|2 � flps
	 |h|2

��� 
, which

is essentially the same as the R-E region of the TS. Thus,
it follows that C PA,OPS

� = C CSIF,TS
� for the case of N = �,

� 2
A = 0, and flps > 0. �
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